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Monday 9:00, Zoom 1

A proof of the Erdős-Faber-Lovász conjecture

Deryk Osthus

University of Birmingham

(This talk is based on joint work with Dong-Yeap Kang, Tom Kelly, Daniela Kühn and
Abhishek Methuku.)

MSC2000: 05D40,05C65

In 1972, Erdős, Faber, and Lovász conjectured the following equivalent statements. Let
n ∈ N.

(i) If A1, . . . , An are sets of size n such that every pair of them shares at most one
element, then the elements of

⋃n
i=1Ai can be coloured by n colours so that all

colours appear in each Ai.

(ii) If G is a graph that is the union of n cliques, each having at most n vertices, such
that every pair of cliques shares at most one vertex, then the chromatic number of
G is at most n.

(iii) If H is a linear hypergraph with n vertices, then the chromatic index of H is at
most n.

Here the chromatic index χ′(H) of a hypergraph H is the smallest number of colours
needed to colour the edges of H so that any two edges that share a vertex have different
colours and a hypergraph is linear if two hyperedges share at most one vertex. Erdős con-
sidered this to be ‘one of his three most favorite combinatorial problems’. The simplicity
and elegance of its formulation initially led the authors to believe it to be easily solved.
However, as the difficulty became apparent Erdős offered successively increasing rewards
for a proof of the conjecture, which eventually reached $500.

We prove the Erdős-Faber-Lovász conjecture for every large n:

Theorem 1. [1] For every sufficiently large n, every linear hypergraph H on n vertices
has chromatic index at most n.

In my talk, I will survey some background, related results and open problems. I will also
discuss some of the ideas involved in the proof.

[1] Dong-Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku and Deryk Osthus,
A proof of the Erdős-Faber-Lovász conjecture, arxiv:2101.04698.
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Monday 13:30, Zoom 1

Decomposing the edges of a graph into simpler
structures

Marthe Bonamy

Université de Bordeaux

MSC2000: 05C15

We will review various ways to decompose the edges of a graph into few simple substruc-
tures. We will mainly focus on variants of edge colouring, and discuss specifically the
discharging method and re-colouring techniques.
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Tuesday 9:00, Zoom 1

Codes and designs in Johnson graphs

Cheryl E. Praeger

The University of Western Australia

(This talk is based on joint work with R. A. Liebler, M. Neunhoeffer, and more recently
J. Bamberg, A. C. Devillers and M. Ioppolo.)

MSC2000: 05C25, 20B25, 94B60

The Johnson graph J(v, k) has, as vertices, all k-subsets of a v-set V , with two k-subsets
adjacent if and only if they share k − 1 common elements of V . Subsets of vertices of
J(v, k) can be interpreted as the block-set of an incidence structure, or as the set of
codewords of a code, and automorphisms of J(v, k) leaving the subset invariant are then
automorphisms of the corresponding incidence structure or code.

This approach leads to interesting new designs and codes. For example, numerous actions
of the Mathieu sporadic simple groups give rise to examples of Delandtsheer designs
(which are both flag-transitive and anti-flag transitive), and codes with large minimum
distance (and hence strong error-correcting properties). In my talk I will explore links
between designs and codes in Johnson graphs which have a high degree of symmetry, and
I will mention several open questions.

4



Tuesday 14:00, Zoom 1

The partition complex: an invitation to
combinatorial commutative algebra

Karim Adiprasito

Hebrew University of Jerusalem

(This talk is based on joint work with Geva Yashfe.)

MSC2000: 05E40

We provide a new foundation for combinatorial commutative algebra and Stanley-Reisner
theory using the partition complex introduced in [1]. One of the main advantages is that
it is entirely self-contained, using only a minimal knowledge of algebra and topology.
On the other hand, we also develop new techniques and results using this approach. In
particular, we provide

1. A novel, self-contained method of establishing Reisner’s theorem and Schenzel’s for-
mula for Buchsbaum complexes.

2. A simple new way to establish Poincaré duality for face rings of manifolds, in much
greater generality and precision than previous treatments.

3. A “master-theorem” to generalize several previous results concerning the Lefschetz
theorem on subdivisions.

4. Proof for a conjecture of Kühnel concerning triangulated manifolds with boundary.

[1] Karim Adiprasito, Combinatorial Lefschetz theorems beyond positivity, 2018, preprint,
arXiv:1812.10454.
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Wednesday 9:00, Zoom 1

Base sizes and relational complexity of finite
permutation groups

Colva Roney-Dougal

University of St Andrews

MSC2000: 20D05

This talk will start by briefly surveying what is known about the maximal subgroups of
the finite simple groups. We will then see how this knowledge has been applied to bound
some combinatorial invariants of finite permutation groups.

A base for a subgroup G of the symmetric group S(Ω) is a subset ∆ of Ω whose pointwise
stabiliser in G is trivial. The first invariant we will look at is the size b(G) of a minimal
base for G. We will see that b(G) gives a coarse estimate of the size of G, and survey
results both old and new which bound b(G). Next, we’ll see how large an irredundant
base for G can be: this is an ordered base ∆ = (δ1, . . . , δk) such that the stabiliser
Gα1,...,αi−1

6= Gα1,...,αi−1,αi
, for all i.

We’ll end by linking these ideas to model theory, via the idea of relational complexity.
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Thursday 9:00, Zoom 1

Hasse-Weil type theorems and relevant classes
of polynomial functions

Daniele Bartoli

Università degli Studi di Perugia

MSC2000: 14-02

Several types of functions over finite fields have relevant applications in applied areas
of mathematics, such as cryptography and coding theory. Among them, planar func-
tions, APN permutations, permutation polynomials, and scattered polynomials have been
widely studied in the last few years.

In order to provide both non-existence results and explicit constructions of infinite fam-
ilies, sometimes algebraic varieties over finite fields turn out to be a useful tool. In a
typical argument involving algebraic varieties, the key step is estimating the number of
their rational points over some finite field. For this reason, Hasse-Weil type theorems
(such as Lang-Weil’s and Serre’s) play a fundamental role.
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Thursday 13:30, Zoom 1

Borel combinatorics

Oleg Pikhurko

University of Warwick

MSC2000: 05C63, 03E05, 28A05

We give an introduction, aimed at non-experts, to Borel combinatorics (that studies
definable graphs on topological spaces and looks for constructive assignments satisfying
some given local combinatorial constraints). This is an emerging field on the borderline
between combinatorics and descriptive set theory with deep connections to many other
areas. The aim of this talk is to advertise this field to a wider research community.
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Friday 9:00, Zoom 1

Generating graphs randomly

Catherine Greenhill

UNSW Sydney

MSC2000: 05C85, 60J10, 68R05, 68W20, 68W40

Graphs are used in many disciplines to model the relationships that exist between objects
in a complex discrete system. Researchers often wish to compare their particular graph
to a “typical” graph from a family (or ensemble) of graphs which are similar to theirs in
some way. Such a family might be the set of all graphs with a given number of vertices
and edges, or the set of all graphs with a particular degree sequence.

One way to do this is to take several random samples from the family, to gather infor-
mation about what is “typical”. This motivates the search for an algorithm which can
generate graphs uniformly (or approximately uniformly) at random from the given fam-
ily. Since many random samples may be required, the algorithm should also be efficient.
Rigorous analysis of such algorithms is often challenging, involving both combinatorial
and probabilistic arguments. I will discuss some algorithms for sampling graphs, and the
methods used to analyse them.
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Friday 16:00, Zoom 1

Recent Advances on the Graph Isomorphism
Problem

Martin Grohe

RWTH Aachen University

MSC2000: 05C60, 68R10, 20B25

The question of whether there is a polynomial time algorithm deciding if two graphs
are isomorphic has been a one of the best known open problems in theoretical computer
science for almost 50 years. Indeed, the graph isomorphism problem is one of the very
few natural problems in the complexity class NP that is neither known to be solvable in
polynomial time nor known to be NP-complete. Five years ago, Babai gave a quasipoly-
nomial time isomorphism algorithm. Despite of this breakthrough result, the question for
a polynomial algorithm remains wide open.

My talk will be a survey of recent progress on the isomorphism problem. I will focus
on two generic algorithmic strategies that have proved to be useful and interesting in
various contexts. The first is the combinatorial Weisfeiler-Leman algorithm with a wide
range of applications from practical graph isomorphism testing to machine learning. The
second is the group theoretic divide-and-conquer strategy, going back to Luks (1983),
that is the foundation of Babai’s quasi-polynomial time isomorphism test. In subsequent
developments, it led to the design of isomorphism algorithms with a quasi-polynomial
parameterised running time of the form npolylog k, where k is a graph parameter such as
the maximum degree.

10



2 Minisymposia talks

11



Tuesday 10:30, Zoom 1

Diagonal semilattices and their graphs

Peter J. Cameron

University of St Andrews

(This talk is based on joint work with R. A. Bailey, Cheryl E. Praeger, Csaba Schneider
and others.)

MSC2000: 05B15,05C25,20B05

Last year, with Rosemary Bailey, Cheryl Praeger and Csaba Schneider, I gave a descrip-
tive and axiomatic approach to a class of geometries (that we called diagonal semilattices)
associated with diagonal groups [3]. These groups arose as one of the classes of finite prim-
itive permutation groups in the O’Nan–Scott Theorem, but in fact can be defined for any
group, finite or infinite. Our theorem asserts that, in two dimensions, these structures are
equivalent to Latin squares, but for higher dimensions, they are coordinatised by a group
T (finite or infinite), and their full automorphism group is the diagonal group. (The Latin
square which is coordinatised by a group is the Cayley table of that group.)

Associated with a diagonal semilattice is a graph, the diagonal graph. In the 2-dimensional
case, this graph is the strongly regular Latin square graph associated with the Latin
square. If the group T is C2, then the graph is the distance-transitive folded cube. In view
of these special cases, we think the graphs warrant further investigation. In particular,
their chromatic number is determined in some cases by the use of graph homomorphisms
and the Hall–Paige conjecture (now a theorem, proved by Wilcox, Evans and Bray).
The question arose in connection with the theory of synchronization of finite automata,
and shows that primitive diagonal groups are synchronizing. However, in other cases, the
chromatic number of the graphs is unknown.

There are further interesting connections which time will not permit me to discuss; see
the references below.

[1] R. A. Bailey and Peter J. Cameron, The diagonal graph, arXiv:2101.02451

[2] R. A. Bailey, Peter J. Cameron, Michael Kinyon and Cheryl E. Praeger, Diagonal
groups and arcs over groups, arXiv:2010.16338

[3] R. A. Bailey, Peter J. Cameron, Cheryl E. Praeger and Csaba Schneider, The geometry
of diagonal groups, arXiv:2007.10726

[4] John N. Bray, Qi Cai, Peter J. Cameron, Pablo Spiga and Hua Zhang, The Hall–Paige
conjecture, and synchronization for affine and diagonal groups, J. Algebra 545 (2020),
27–42.
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Tuesday 11:05, Zoom 1

Mutually Orthogonal Frequency Squares

Nicholas Cavenagh

University of Waikato

(This talk is based on joint work with Ian Wanless, Adam Mammoliti, Thomas Britz
and Fahim Rahim.)

MSC2000: 05B15, 05B20, 15B34, 62K15

A frequency square of type (n;λ) is a n×n array such that each symbol from a set of size
n/λ occurs λ times in each row and λ times each in column. Thus a frequency square of
type (n; 1) is a Latin square of order n. Two frequency squares of type (n;λ) are said to be
orthogonal if each possible ordered pair occurs λ2 times when the squares are overlapped.
Sets of mutually orthogonal frequency squares (MOFS) occur more easily than sets of
mutually orthogonal Latin squares (MOLS); for example there is a set of seventeen MOFS
of type (6; 3); but, as Euler knew, there are no pairs of MOLS of order 6. We give new
results on the existence and non-existence of MOFS and maximal sets of MOFS. These
results feature Hadamard matrices and integral polytopes. We also mention applications
to statistical factorial designs with double blocking.
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Tuesday 11:40, Zoom 1

A lower bound on HMOLS

Peter Dukes

University of Victoria

(This talk is based on joint work with Michael Bailey and Coen del Valle.)

MSC2000: 05B10, 05B15

It is known that N(n), the maximum number of mutually orthogonal latin squares of
order n, satisfies the lower bound N(n) ≥ n1/14.8 for large n.

We consider HMOLS, or mutually orthogonal latin squares having a common equiparti-
tion into n ‘holes’ of a fixed size h. In a little more detail, each array is nh× nh, and the
diagonal h×h blocks are empty. Each row or column meeting the jth diagonal block con-
tains, exactly once, every element not in the jth run of elements, say (j−1)h+ 1, . . . , jh.
Similar to the definition for orthogonal latin squares, two holey latin squares are orthog-
onal if, when superimposed, any ordered pair with not both elements from the same run
appears exactly once. An example with h = 2 and n = 4, due to Dinitz and Stinson, is
shown below.

8 6 3 7 4 5
5 7 8 4 6 3

7 6 1 8 5 2
5 8 7 2 1 6
4 7 2 8 3 1
8 3 7 1 2 4
3 5 6 2 4 1
6 4 1 5 2 3

5 7 8 4 6 3
8 6 3 7 4 5

5 8 7 2 1 6
7 6 1 8 5 2
8 3 7 1 2 4
4 7 2 8 3 1
6 4 1 5 2 3
3 5 6 2 4 1

For an alternate viewpoint, a set of k − 2 HMOLS of type hn is equivalent to a Kk-
decomposition of the blow-up of the complete k-partite graph Kn,n,...,n by independent
sets of size h.

Let N(hn) denote the maximum number of HMOLS of type hn. We generalise a difference
matrix method that had been used previously for explicit constructions of HMOLS. An
estimate of R.M. Wilson on higher cyclotomic numbers guarantees our construction suc-
ceeds in suitably large finite fields. Feeding this into a generalized product construction,
we obtain a modest lower bound N(hn) ≥ (log n)1/δ for any δ > 2 and all n > n0(h, δ).
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Tuesday 12:15, Zoom 1

Ryser’s conjecture and more

Liana Yepremyan

London School of Economics

(This talk is based on joint work with Peter Keevash, Alexey Pokrovskiy, Benny
Sudakov.)

MSC2000: 05D15, 05D40, 05C35, 05C15, 05C35, 05C38, 05C48, 05B15

A Latin square of order n is an n× n array filled with n symbols such that each symbol
appears only once in every row or column and a transversal is a collection of cells which
do not share the same row, column or symbol. The study of Latin squares goes back more
than 200 years to the work of Euler. One of the most famous open problems in this area
is a conjecture of Ryser, Brualdi and Stein from 60s which says that every Latin square of
order n×n contains a transversal of order n− 1. A closely related problem is 40 year old
conjecture of Brouwer that every Steiner triple system of order n contains a matching of
size (n− 4)/3. The third problem we’d like to mention asks how many distinct symbols
in Latin arrays suffice to guarantee a full transversal? In this talk we discuss a relatively
new approach to attack these problems.
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Tuesday 10:30, Zoom 2

Counting solutions in the random k-SAT model

Andreas Galanis

University of Oxford

(This talk is based on joint work with Leslie Ann Goldberg, Heng Guo, and Kuan Yang.)

MSC2000: 68Q87

Random constraint satisfaction problems, such as the k-SAT model, have long posed
various algorithmic and probabilistic challenges. In this talk, we focus on the number of
solutions, the so-called partition function, which is a key quantity that captures the un-
derlying phase transitions and typically requires a very fine understanding of the solution
space.

We present a new algorithmic approach for counting the number of solutions in the
random k-SAT model, when the density of the formula scales exponentially with k. This
improves significantly upon the best previous counting algorithm by Montanari and Shah,
which is based on belief propagation and works up to densities (1 + ok(1))2 log k

k
, the

so-called Gibbs uniqueness threshold for the model. Instead, our algorithm harnesses a
recent coupling technique by Moitra, based on the Lovász Local Lemma (LLL), to work
for random formulas. The main challenge in our setting is to account for the presence of
high-degree variables whose marginal distributions are hard to control and which cause
significant correlations within the formula. The key ingredient in our approach is to
control the correlation phenomena caused by high-degree variables based on a certain
bootstrap percolation process.
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Tuesday 11:05, Zoom 2

Local Colouring

Alexander E. Holroyd

University of Bristol

MSC2000: 60G10, 05C15, 60C05

Do local constraints demand global coordination? I’ll address a particularly simple for-
mulation of this question: can the vertices of a graph be assigned random colours in a
stationary way, so that neighbouring colours always differ, but without long-range depen-
dence? The quest to answer this has led to the discovery of a beautiful yet mysterious new
stochastic process that seemingly has no right to exist, while overturning the conventional
thinking on a fundamental 50-year old question.

Based on joint works with Tom Liggett, Tom Hutchcroft and Avi Levy.
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Tuesday 11:40, Zoom 2

Nonconvergence in the first order logic of
permutations

Tobias Müller

Groningen University

(This talk is based on joint work with Fiona Skerman.)

MSC2000: 05A05, 05C80

Recently Albert, Bouvel and Féray introduced the theory of two total orders (TOTO)
which allows one to express properties of permutations in first order logic. We are al-
lowed to use the quantifiers ∀,∃, variables x, y, z, . . . , the logical connectives ∧,∨,¬, etc.,
brackets and the relation symbols =, <1, <2. Thinking of a permutation π as a map from
[n] := {1, . . . , n} two itself, if x, y represent two elements of [n] then x <1 y just means
that x < y while x <2 y means that π(x) < π(y). The occurrence of the pattern 231 can
for instance be expressed as

∃x, y, z : (x <1 y) ∧ (y <1 z) ∧ (z <2 x) ∧ (x <2 y).

We consider the probability that a given property expressible in TOTO holds for a ran-
dom permutation. That is, a permutation πn chosen uniformly at random from all n!
permutations of [n]. Answering a question of Albert, Bouvel and Féray in the negative,
we show that there exists a property ϕ expressible in TOTO, such that

lim
n→∞

P(πn satisfies ϕ) does not exist.

That is, we construct a ϕ ∈ TOTO such that probability that πn satisfies it oscillates
between zero and one. The construction builds on the seminal work of Shelah and Spencer
on first order properties for the Erdős-Rényi random graph.

(Based on joint work with Fiona Skerman)
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Tuesday 12:15, Zoom 2

Oriented percolation with modified boundaries

Leonardo T. Rolla

University of Warwick

(This talk is based on joint work with Enrique Andjel.)

MSC2000: 60K35

Monotonicity questions in oriented percolation and contact process are more tricky than
we may think, and nothing similar to enhanced percolation arguments seem to work.
For example, it is immediate that the critical parameter of contact process is monotone
in the dimension, but there is so far no proof that it is strictly monotone. In this talk,
we consider two-dimensional directed percolation (or one-dimensional contact process)
with two parameters: infection from the leftmost and rightmost occupied sites towards
the exterior occurs with a different rate than in the interior. We show that the critical
curve on the parameter space is strictly decreasing. In particular, any subcritical choice
for the external parameter causes the critical internal parameter to increase strictly. In
this regime, the process is still attractive but no longer additive, and most of the classi-
cal arguments break down. We also show that any supercritical choice for the external
parameter makes the process percolate even if the internal parameter is critical (in this
regime, the process is not attractive).
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Wednesday 14:30, Zoom 1

Clustered colouring of planar graphs

Louis Esperet

CNRS, Univ. Grenoble Alpes

(This talk is based on joint work with M. Bonamy, N. Bousquet, C. Groenland, C.-H.
Liu, F. Pirot, and A. Scott, and with V. Dujmović, P. Morin, B. Walczak, and D.R.

Wood.)

MSC2000: 05C10,05C12,05C15

A (not necessarily proper) vertex colouring of a graph has clustering at most C if every
monochromatic component has at most C vertices. Note that a proper colouring is the
same as a colouring with clustering at most 1. It is well-known that every planar graph
has a proper 4-colouring. We show that there is a constant C such that every planar
graph has a 3-colouring in which each monochromatic component has weak diameter at
most C (which means that any two vertices in the component are at distance at most C
in the graph). This directly implies the (known) result that planar graphs with maximum
degree ∆ are 3-colourable with clustering polynomial in ∆. We also prove that (without
additional properties on the diameter of the monochromatic components) the clustering
can be decreased to O(∆2), improving the previous bound of O(∆37).
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Wednesday 15:05, Zoom 1

Dichotomizing k-vertex-critical H-free graphs
for H of order four

Ch́ınh T. Hoàng

Wilfrid Laurier University

(This talk is based on joint work with Ben Cameron and Joe Sawada.)

MSC2000: 05C15

For every k ≥ 1 and ` ≥ 1, we prove that there is a finite number of k-vertex-critical (P2+
`P1)-free graphs. This result establishes the existence of new polynomial-time certifying
algorithms for deciding the k-colorability of (P2+`P1)-free graphs. Together with previous
research, our result also implies the following characterization: There is a finite number
of k-vertex-critical H-free graphs for H of order and for fixed k ≥ 5 if and only if H is
one of K4, P4, P2 + 2P1, or P3 + P1. We also improve the recent known result that there
is a finite number of k-vertex-critical (P3 +P1)-free graphs for all k by showing that such
graphs have at most 2k− 1 vertices. We use this stronger result to exhaustively generate
all k-vertex-critical (P3 + P1)-free graphs for k ≤ 7.
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Wednesday 15:40, Zoom 1

Excluding a tree and a biclique

Sophie Spirkl

University of Waterloo

(This talk is based on joint work with Alex Scott and Paul Seymour.)

MSC2000: 05C15, 05C75

The Gyárfás-Sumner conjecture states that for every tree T , there is a function f such
that graphs G with no induced T have chromatic number bounded by f of their clique
number, that is, χ(G) ≤ f(ω(G)). Hajnal and Rödl proved that if we replace “clique
number” by “biclique number”, that is, the largest t such that the graph G contains Kt,t

as a (not necessarily induced) subgraph, then the conjecture holds.

Bonamy, Bousquet, Pilipczuk, Rzazewski, Thomassé and Walczak recently showed further
that in this biclique setting, if T is a path, then f can be chosen as a polynomial function.
I will talk about a recent result, which extends this from paths to all trees.

Joint work with Alex Scott and Paul Seymour.
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Wednesday 16:15, Zoom 1

Burling graphs revisited

Nicolas Trotignon

CNRS, LIP, ENS de Lyon

(This talk is based on joint work with Pegah Pournajafi.)

MSC2000: 05C15

The Burling sequence is a sequence of triangle-free graphs of increasing chromatic num-
ber. Any graph which is an induced subgraph of a graph in this sequence is called a
Burling graph. These graphs have attracted some attention because they have geometric
representations and because they provide counter-examples to several conjectures about
bounding the chromatic number in classes of graphs.

The goal of this talk is to provide new definitions of Burling graphs. Three of them are ge-
ometrical : they characterize Burling graphs as intersection graphs of various geometrical
objects (line segments of the place, frame of the plane, axis-aligned boxes of R3). All these
representations of Burling graphs were known. Our contribution is to add restrictions to
the configurations of the geometrical objects so that there is an equivalence between the
intersection graphs and the Burling graphs.

Among our new equivalent definitions of Burling graphs, one is of a more combinatorial
flavour. It says how any Burling graph can be derived from a tree with some specific
rules. This definition is convenient decide whether some given graph is Burling or not.
We use it to give several generic examples of Burling graphs or rules to find edges whose
subdivision preserves being a Burling graph. We also use it to find examples of graphs
that are not Burling. Among several consequences of all this, one is that graphs that do
not contain any subdivision of K5 as an induced subgraph have unbounded chromatic
number.
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Wednesday 14:30, Zoom 2

Sidorenko systems of equations

Anita Liebenau

UNSW Sydney

(This talk is based on joint work with Nina Kamčev and Natasha Morrison.)

MSC2000: 05D99

A system of linear forms L over Fq is Sidorenko if the number of solutions to L = 0 in any
subset A of Fn

q is asymptotically (as n→ ∞) at least the expected number of solutions in
a random subset of Fn

q of density |A|/qn. The systematic study of Sidorenko systems of
linear equations was recently initiated by Saad and Wolf and follows an extensive research
on Sidorenko’s conjecture for graphs. Building on a result by Saad and Wolf, Fox, Pham
and Zhao found a characterisation for one-equation systems that are Sidorenko.

In this talk, we report on recent progress towards characterising Sidorenko systems of two
or more equations. In particular, we provide a simple necessary condition for a system
to be Sidorenko by proving that the length of a shortest equation induced by the system
must be even. We also find a large class of systems that are Sidorenko by combining
Sidorenko equations in a certain way.
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Wednesday 15:05, Zoom 2

Spanning subgraphs in randomly perturbed graphs

Olaf Parczyk

London School of Economics and Political Science

(This talk is based on joint work with Julia Böttcher, Amedeo Sgueglia, and Jozef
Skokan.)

MSC2000: 05C35, 05C80

We study the model of randomly perturbed dense graphs, which is the union of any n-
vertex graph Gα with minimum degree αn and the binomial random graph G(n, p). For
the range 0 ≤ α < 1 we are interested in the evolution of the threshold probability p̂(α)
that determines when Gα∪G(n, p) asymptotically almost surely satisfies a given property.
In this talk, we discuss questions on the containment of specific spanning structures, such
as clique factors and powers of Hamilton cycles, and whole families of graphs, such as
those with bounded maximum degree.
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Wednesday 15:40, Zoom 2

Progress towards Nash-Williams’ conjecture on
triangle decompositions

Michelle Delcourt

Ryerson University

(This talk is based on joint work with Luke Postle.)

MSC2000: 05C51

Partitioning the edges of a graph into edge disjoint triangles forms a triangle decompo-
sition of the graph. A famous conjecture by Nash-Williams from 1970 asserts that any
sufficiently large, triangle divisible graph on n vertices with minimum degree at least
0.75n admits a triangle decomposition. In the light of recent results, the fractional ver-
sion of this problem is of central importance. A fractional triangle decomposition is an
assignment of non-negative weights to each triangle in a graph such that the sum of the
weights along each edge is precisely one.

We show that for any graph on n vertices with minimum degree at least 0.827327n
admits a fractional triangle decomposition. Combined with results of Barber, Kühn, Lo,
and Osthus, this implies that for every sufficiently large triangle divisible graph on n
vertices with minimum degree at least 0.82733n admits a triangle decomposition. This
is a significant improvement over the previous asymptotic result of Dross showing the
existence of fractional triangle decompositions of sufficiently large graphs with minimum
degree more than 0.9n.
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Wednesday 16:15, Zoom 2

Uncommon systems of equations

Natasha Morrison

University of Victoria

(This talk is based on joint work with Nina Kamčev and Anita Liebenau.)

MSC2000: 05D99

A system of linear equations L over Fq is common if the number of monochromatic
solutions to L in any two-colouring of Fn

q is asymptotically at least the expected number
of monochromatic solutions in a random two-colouring of Fn

q . Motivated by existing results
for specific systems (such as Schur triples and arithmetic progressions), as well as extensive
research on common and Sidorenko graphs, the systematic study of common systems of
linear equations was recently initiated by Saad and Wolf. Building on earlier work of of
Cameron, Cilleruelo and Serra, as well as Saad and Wolf, common linear equations have
been fully characterised by Fox, Pham and Zhao.

In this talk I will discuss some recent progress towards a characterisation of common
systems of two or more equations. In particular we prove that any system containing an
arithmetic progression of length four is uncommon, confirming a conjecture of Saad and
Wolf. This follows from a more general result which allows us to deduce the uncommonness
of a general system from certain properties of one- or two-equation subsystems.
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Thursday 15:00, Zoom 1

On optimal cryptographic Boolean functions

Lilya Budaghyan

University of Bergen

MSC2000: 06E30, 94A60, 94D10

Almost perfect nonlinear (APN) and almost bent (AB) functions are vectorial Boolean
functions which are optimal against two powerful attacks on block ciphers - linear and
differential cryptanalyses. Interestingly, these functions exhibit optimality properties also
with respect to combinatorics, coding theory, sequence design, algebra and finite geome-
try. We will talk about recent developments in study of these functions.
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Thursday 15:35, Zoom 1

On divisible linear codes

Michael Kiermaier

Universität Bayreuth

(This talk is based on joint work with Sascha Kurz.)

MSC2000: 94B05

Divisible codes have been introduced by Harold Ward in 1981. A linear code C is called
∆-divisible if the weight of all codewords is divisible by ∆. Divisible codes are interesting
for various reasons, amongst others:

• Many good codes are divisible.

• (Hermitean) self-orthogonality of binary, ternary and quaternary codes can some-
times be generalized to divisibility.

• There are results and conjectures about the divisibility of Griesmer-optimal linear
codes.

• There are interconnections to other research areas like Galois geometries and the
theory of subspace codes.

In this talk, we will examine old and new results about divisible linear codes. Moreover,
applications in Galois geometries and subspace codes will be discussed.
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Thursday 16:10, Zoom 1

Distributed storage systems and finite geometry

Siaw-Lynn Ng

Information Security Group, Royal Holloway, University of London

(This talk is based on joint work with M. B. Paterson.)

MSC2000: 51E20,94B99

While existing geometric and combinatorial objects often provide constructions for vari-
ous applications in communication and information security, these applications can also
inspire new and interesting combinatorial structures. Here I will talk about two topics
in distributed storage systems (specifically, functional repair codes) that illustrate this
relationship between these applications and finite geometry.

A database can be coded and stored in multiple nodes in such a way that if a number of
nodes fail, the data can still be recovered from the functioning nodes, and if a node should
fail, it can be repaired using information in some of the functioning nodes so that the the
recovery property of the system still holds. A functional repair code can be modelled as
subspaces in a finite projective space [3]. The nodes are represented by subspaces, and
to ”repair” a subspace, we attempt to find smaller subspaces contained in some existing
nodes, and use these to construct the target subspace.

Firstly we will see how this approach allows a simplified proof of the important upper
bound [1] on the number of information symbols one can store in a system that is subject
to storage and bandwidth constraints. Secondly we will see an interesting geometric struc-
ture that arises from a special class of functional repair codes, called strictly functional
repair codes: there are nodes that cannot be replicated exactly when failed, even though
they can be repaired to the extent that the recovery property of the system still holds.
We will see some examples of this geometrical structure.

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright and K. Ramchandran.
Network coding for distributed storage systems. IEEE Transactions on Information
Theory, 56(9):4539–4551, Sept. 2010.

[2] S. L. Ng and M. B. Paterson. Functional repair codes: a view from projective geom-
etry. Designs, Codes and Cryptography, 87(11), 2701-2722

[3] H. D. L. Hollmann and W. Poh. Characterizations and construction methods for lin-
ear functional repair storage codes. IEEE International Symposium on Information
Theory (ISIT), Istanbul, Turkey, July 2013, pp. 336–340.
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Thursday 16:45, Zoom 1

On Security Properties of All-or-nothing
Transforms

Douglas Stinson

University of Waterloo

(This talk is based on joint work with Navid Nasr Esfahani.)

MSC2000: 94A60

All-or-nothing transforms have been defined as bijective mappings on all s-tuples over a
specified finite alphabet. These mappings are required to satisfy certain security condi-
tions that upper-bound information about a subset of the inputs that can be inferred from
the knowledge of some of the outputs. Alternatively, a purely combinatorial definition of
AONTs has also been given. This definition involves certain kinds of “unbiased arrays,”
which are related to, but weaker than, orthogonal arrays.

In this talk, we examine the security provided by AONTs that satisfy the combinatorial
definition. The security of the AONT can depend on the underlying probability distribu-
tion of the input s-tuples. We show that “perfect security” is obtained from an AONT
if and only if the input s-tuples are equiprobable. However, in the case where the input
s-tuples are not equiprobable, we still achieve a weaker security guarantee. We also con-
sider the use of randomized AONTs to provide perfect security for a smaller number of
inputs, even when those inputs are not equiprobable.
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Thursday 15:00, Zoom 2

Interval-membership-width: a purely temporal
parameter

Kitty Meeks

University of Glasgow

(This talk is based on joint work with Benjamin Bumpus.)

MSC2000: 05C85, 68R10, 05C40

Many algorithmic problems become harder on temporal graphs, in which each edge only
appears at a specified set of times. In particular, the temporal versions of several prob-
lems remain intractable on temporal graphs even when the underlying graph has very
restricted structure that would allow for efficient algorithms to solve the corresponding
static problem – for example, when the underlying graph is a tree or even a path. This
rules out the existence of efficient parameterised (FPT) algorithms for such problems with
respect to most well-known graph parameters, and therefore poses a major challenge for
the design of FPT algorithms in this setting.

In this talk, I will introduce a new parameter for temporal graphs, called interval-
membership-width. This parameter does not depend on the structure of the underlying
graph, but on the relationships between the sets of times at which each edge appears in
the graph. I will illustrate how we can obtain efficient dynamic programming algorithms
to solve a variety of temporal graph problems when this parameter is small, focussing
in particular on temporal analogues of the problems of determining whether a graph is
Hamiltonian or Eulerian respectively.
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Thursday 15:35, Zoom 2

Towards Classifying the Polynomial-Time
Solvability of Temporal Betweenness Centrality

Hendrik Molter

Ben-Gurion University of the Negev

(This talk is based on joint work with André Nichterlein, Rolf Niedermeier, and Maciej
Rymar.)

MSC2000: 68Q25

In static graphs, the betweenness centrality of a graph vertex measures how many times
this vertex is part of a shortest path between any two graph vertices. Betweenness central-
ity is efficiently computable and it is a fundamental tool in network science. Continuing
and extending previous work, we study the efficient computability of betweenness central-
ity in temporal graphs (graphs with fixed vertex set but time-varying arc sets). Unlike in
the static case, there are numerous natural notions of being a “shortest” temporal path
(walk). Depending on which notion is used, it was already observed that the problem is
#P-hard in some cases while polynomial-time solvable in others. In this conceptual work,
we contribute towards classifying what a “shortest path (walk) concept” has to fulfill in
order to gain polynomial-time computability of temporal betweenness centrality.
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Thursday 16:10, Zoom 2

A Temporal Chase Is Harder Than You Think

Nils Morawietz

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Marburg,
Germany

(This talk is based on joint work with Carolin Rehs (Heinrich Heine Universität,
Düsseldorf), Mathias Weller (Université Gustave Eiffel, Marne-la-Vallée), and Petra

Wolf (Universität Trier).)

MSC2000: 68Q25

We consider the (parameterized) complexity of a cop and robber game on edge-periodic
temporal graphs and a problem on periodic binary sequences to which these games relate
intimately. We show that it is NP-hard to decide (a) whether a single cop can catch a
single robber on an edge-periodic temporal graph, and (b) whether there is some common
index at which all given periodic, binary sequences are 1. We further present results for
various parameterizations of both problems and show that hardness not only applies in
general, but also for highly limited instances. As one main result we show that even
if the underlying graph is a directed or undirected cycle, the cop and robber game on
periodic, temporal graphs is NP-hard and W[1]-hard when parameterized by the size of
the underlying graph. Further, we present matching lower bounds for the relation between
the length of the underlying cycle and the least common multiple of the lengths of binary
strings describing edge-periodicies over which the graph is robber-winning. Finally, we
improve the previously known EXPTIME upper bound on general edge-periodic graphs
to PSPACE-membership. This closes several open problems stated in the introductory
work by Erlebach and Spooner [SOFSEM 2020].
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Thursday 16:45, Zoom 2

Distributed Algorithms over Temporal
Networks?

Amitabh Trehan

Durham University

MSC2000: 68R10,05C85,05C90

Temporal graph theory and algorithms are often concerned with changing edges (tempo-
ral) and centralised algorithms with the graph given as input. In Distributed algorithms,
on the other hand, the graph is usually the network itself. Distributed algorithms deal
with both the situations where the graph is static or changing (dynamic). It will be in-
teresting to explore the connections between distributed algorithms and temporal graph
theory. We pose some some possibly interesting questions and/or extensions.

The common temporal/dynamic setting is for the edges of a graph to change over the same
fixed set of vertices. A different setting is that of ‘self-healing’ - i.e. fault-tolerance by quick
local repair of a system under adversarial attack to another good but possibly degraded
state [1]. One version that can be imagined is playing a round-based game on a graph
where one player (adversary) can remove or add one node per round with the other player
(healer) adding or removing edges in the locality of the attack with the aim of preserving
certain invariants throughout the history of the attacks and repairs. Can this inspire
extensions of temporal graph theory in presence of churn (node additions/deletions)?
How does one even state results when node additions are permitted?

Amnesiac Flooding [2] is among the simplest algorithms for information dissemination
on a network. The basic algorithm is to forward a message to every node except the ones
you just received the message from. This algorithm is ’stateless’ and uses no additional
memory. However, with such loss of history, it is possible that the messages could be re-
generated ad-infinitum and circulated forever on the network. In practice, ‘memory’ flags
are used explicitly to make sure a message is not circulated again. However, surprisingly
and despite its simplicity, it turns out that amnesiac flooding terminates on every graph
i.e. message circulation stops in a finite number of rounds. How would this behave for
temporal graphs i.e. graphs whose edges may change over time?

[1] Amitabh Trehan. Algorithms for self-healing networks. Dissertation, University of
New Mexico, 2010. https://arxiv.org/abs/1305.4675.

[2] Walter Hussak and Amitabh Trehan. On the Termination of Flooding. 37th Interna-
tional Symposium on Theoretical Aspects of Computer Science STACS 2020, March
10-13, 2020, Montpellier, France. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
2020.
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Monday 10:30, Zoom 1

Iterated Integrals of Clique Polynomials

Hossein Teimoori Faal

Department of Mathematics and Computer Science, Allameh Tabataba’i University,
Tehran, Iran

MSC2000: 05C31, 05C69, 30C15

Despite the significance of graph polynomials in algebraic graph theory, to the best of the
authors’ knowledge, the graph-theoretical interpretations of iterated integrals of graph
polynomials have not been considered in the literature. A clique polynomial of a simple
and undirected graph G is an ordinary generating function of the number of complete
subgraphs on i vertices (i-cliques). The set of all i-cliques of G will be denoted by ∆i(G).
We also denote the number of i-cliques of G by ci(G). By convention c0(G) = 0, for any
graph G. We also note that by convention C(G, x) = 1, whenever G is the order-zero
graph; that is, a graph without any vertices and edges. We give a recursive definition of
the generalized (open) neighborhood NG(Ql) of any higher order clique Ql with l vertices
by

NG(Ql) =
⋂

Ql∈∆l−1(G)

NG(Ql−1) (l ≥ 2).

where NG(Q1) (or NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)} ) is exactly the (open) neigh-
borhood of G. Next we need one more interesting definition which orginally comes from
discrete Morse theory. For the generalized neighborhood NG(Ql) of any clique Ql and a
locally injective function fG : V (G) ∪ E(G) 7→ R, we define its corresponding negative
(open) neighborhood denoted by N<0

G (Ql) , as follows.

N<0
G (Ql) =

{
v ∈ NG(Ql) | fG(v)− fG(q) < 0, ∀q ∈ V (Ql) ∪ E(Ql)

}
.

Moreover, for a given graph polynomial f(G, x), we define its iterated integral of order k
as Ik,f (G, x) =

∫ x

0

∫ tk−1

0
· · ·

∫ t1
0
f(G, s)dsdt1 · · · dtk−1 .

Theorem 1 (Main Result). Let C(G, x) be the clique polynomial of a graph G = (V,E)
and fG : V (G) ∪ E(G) 7→ R be a locally injective function defined on G. Then, we have
the following combinatorial interpretations

C(G, x) =
k−1∑

i=0

cj(G)xj + k!
∑

Qk∈∆k(G)

Ik,fG(G[NG(Q)]), x), (k ≥ 1), (1)

C(G, x) =
k−1∑

i=0

cj(G)xj + xk
∑

Qk∈∆k(G)

C(G[N<0
G (Q)], x), (k ≥ 1). (2)

The proofs are mainly based on counting arguments (the generalized clique handshaking
lemma) and the mathematical induction. Finally, we will conclude our talk with several
interesting open problems and conjectures.
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Monday 10:55, Zoom 1

New insight into introducing a
(2− ε)-approximation ratio for minimum vertex

cover problem

Majid Zohrehbandian

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.

MSC2000: 90C35 , 90C60

Vertex cover problem is a famous combinatorial problem, which its complexity has been
heavily studied. It is known that it is hard to approximate to within any constant factor
better than 2, while a 2-approximation for it can be trivially obtained. In this paper, new
properties (e.g. existence of a feasible solution with cardinality smaller than 0.999|V |, or
existence of a connected subgraph of vertices with values 0.5 + ε and cardinality greater
than 0.001|V |, or existence of vertices with degrees greater than 0.001|V |) and new tech-
niques (contraction of the paired vertices to construct triangles) are introduced which
lead to approximation ratios smaller than 2 on special graphs; e.g. Graphs for which their
maximum cut optimal values are less than 0.85|E|. In fact, we show that we can produce
a (2− ε)-approximation ratio on special graphs, where they don’t satisfy some of the pro-
posed assumptions. Then, by introducing a modified graph and corresponding ILP model
along with satisfying all the proposed assumptions, we introduce new insight into solving
this open problem and we introduce an approximation algorithm with performance ratio
(2− ε) on arbitrary graphs.

38



Monday 11:20, Zoom 1

Containment graphs and posets of paths in a tree

Martin Charles Golumbic

University of Haifa, Israel

(This talk is based on joint work with Vincent Limouzy.)

MSC2000: 05C75,06A07

We consider questions regarding the containment graphs of paths in a tree (CPT graphs),
a subclass of comparability graphs. The posets defined by their transitive orientations are
called CPT orders. In 1984, Corneil and Golumbic observed that a graph G may be CPT,
yet not every transitive orientation of G necessarily has a CPT representation, illustrating
this on the even wheelsW2k(k ≥ 3). Motivated by this example, we characterize the partial
wheels that are the containment graphs of paths in a tree, and give a number of examples
and obstructions for this class. Our characterization gives the surprising result that all
partial wheels that admit a transitive orientation are CPT graphs. We then characterize
the CPT orders whose comparability graph is a partial wheel. A survey of other results
and open questions on CPT graphs and posets will conclude the talk.
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Monday 11:45, Zoom 1

A Linear Algorithm for Computing Independence
Polynomials of Trees

Ohr Kadrawi

Ariel University

(This talk is based on joint work with Vadim E. Levit, Ron Yosef and Matan Mizrachi.)

MSC2020: 05C31, 05C05, 05C69

An independent set in a graph is a set of pairwise non-adjacent vertices. Let α(G) denote
the cardinality of a maximum independent set in the graph G = (V,E). Gutman and
Harary defined the independence polynomial of G

I(G;x) =

α(G)∑

k=0

skx
k = s0 + s1x+ s2x

2 + ...+ sα(G)x
α(G),

where sk denotes the number of independent sets of cardinality k in the graph G [1].
A comprehensive survey on the subject is due to Levit and Mandrescu [2], where some
recursive formulas are allowing to calculate the independence polynomial. A direct imple-
mentation of these recursions does not bring about an efficient algorithm. Yosef, Mizrachi,
and Kadrawi developed an efficient way for computing the independence polynomials of
trees with n vertices, such that a database containing all of the independence polynomials
of all the trees with up to n− 1 vertices is required [3]. This approach is not suitable for
big trees, as an extensive database is needed. On the other hand, using dynamic program-
ming, it is possible to develop an efficient algorithm that prevents repeated calculations.
In summary, our dynamic programming algorithm runs over a tree in linear time and
does not depend on a database.

[1] Gutman I. , Harary F., “Generalizations of the matching polynomial,” Utilitas Math-
ematica, Vol.24, 97-106, 1983.

[2] Levit V. E. and Mandrescu E., “The independence polynomial of a graph - a survey,”
Proceedings of the 1st International Conference on Algebraic Informatics, 231-252,
2005.

[3] Yosef R., Mizrachi M., Kadrawi O. “On unimodality of independence polynomials of
trees”, https://arxiv.org/pdf/2101.06744v3.pdf, 2021.
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Monday 10:30, Zoom 2

On the Construction of Optimal Linear Codes
from Hyperbolic Quadrics

Atsuya Kato

Osaka Prefecture University

(This talk is based on joint work with Keita Nomura and Tatsuya Maruta.)

MSC2000: 94B05, 94B27

An [n, k, d]q code is a linear code of length n, dimension k and minimum weight d over
Fq, the field of order q. A fundamental problem in coding theory is to find nq(k, d), the
minimum length n for which an [n, k, d]q code exists for given q, k, d [1]. A (q+ 1)2-set in
PG(3, q) projectively equivalent to the set V (x0x1 + x2x3) is called a hyperbolic quadric
[2]. Divisible codes and the projective dual method are often used to construct optimal
linear codes [3]. From two hyperbolic quadrics in PG(3, q) through the same four lines,
we construct a q-divisible [2q2 − 3, 4, 2q2 − 3q]q code C for q ≥ 3. As a projective dual of
C, we get a q-divisible [q3 − 2q2 + q + 3, 4, q3 − 3q2 + 3q]q code, which is optimal up to
length for 3 ≤ q ≤ 13.

[1] R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford
Univ. Press, Oxford, 1992, pp. 75–104.

[2] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press,
Oxford, 1998.

[3] Y. Inoue, T. Maruta, Geometric extending of divisible codes and construction of new
linear codes, Finite Fields Appl. 71 (2021), 101773.

41



Monday 10:55, Zoom 2

On the Nonexistence of Ternary Griesmer Codes

Daiki Kawabata

Osaka Prefecture University

(This talk is based on joint work with Tatsuya Maruta.)

MSC2000: 94B05, 94B27

An [n, k, d]q code C is a linear code of length n, dimension k and minimum weight d over
Fq, the field of order q. C is called Griesmer if it attains the Griesmer bound:

n ≥ gq(k, d) :=
k−1∑

i=0

⌈
d

qi

⌉
,

where dze stands for the minimum integer ≥ z. It is known for k = 1, 2 that the Griesmer
bound is achieved for all d. So, we assume k ≥ 3. For fixed q and k, it is also known that
Griesmer codes with minimum weight d exist for all sufficiently large d [1]. One of the
central problems in coding theory is to find nq(k, d), the minimum length n for which an
[n, k, d]q code exists. A natural question is the following.

Problem. For fixed q and k, find the integer Dq,k satisfying that nq(k, d) = gq(k, d) for
all d > Dq,k and that nq(k, d) > gq(k, d) for d = Dq,k. Then, determine nq(k,Dq,k).

It is known that Dq,k = (k − 2)qk−1 − (k − 1)qk−2 and that nq(k,Dq,k) = gq(k,Dq,k) + 1
for q ≥ k with k = 3, 4, 5 and for q ≥ 2k − 3 with k ≥ 6 [2, 4]. We posed a conjecture on
D3,k, which is valid for 4 ≤ k ≤ 7 [3]. We give recent results about this conjecture.

[1] R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford
Univ. Press, Oxford, 1992, pp. 75–104.

[2] Y. Kageyama, T. Maruta, On the geometric constructions of optimal linear codes,
Des. Codes Cryptogr. 81 (2016) 469–480.

[3] D. Kawabata, T. Maruta, A conjecture on optimal ternary linear codes, Proceedings
of 17th International Workshop on Algebraic and Combinatorial Coding Theory, 2020
Algebraic and Combinatorial Coding Theory (ACCT), IEEE Xplore (2021) 90–94.

[4] T. Maruta, On the achievement of the Griesmer bound, Des. Codes Cryptogr. 12
(1997) 83–87.
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Monday 11:20, Zoom 2

Scattered polynomials and their exceptionality

Ferdinando Zullo

Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy.

(This talk is based on joint work with Daniele Bartoli and Giovanni Zini.)

MSC2000: 11T06, 51E20

Scattered polynomials over a finite field Fqn have been introduced by Sheekey in 2016
[6] in connection with maximum scattered linear sets in PG(1, qn) and maximum rank
distance codes. A central open problem regards the classification of those that are ex-
ceptional. So far, only two families of exceptional scattered polynomials are known and
some classification results have been provided, see [1, 2, 4]. More recently, Longobardi and
Zanella in [5] weakened the property of being scattered by introducing the notion of L-qt-
partially scattered and R-qt-partially scattered polynomials, for t a divisor of n. Indeed, a
polynomial is scattered if and only if it is both L-qt-partially scattered and R-qt-partially
scattered. In this talk, we will first survey on the known classification results about ex-
ceptional scattered polynomials and then we will investigate the exceptionality of both
the properties of being L-qt-partially scattered and R-qt-partially scattered. Moreover, we
will present a large family F of R-qt-partially scattered polynomials, containing examples
of exceptional R-qt-partially scattered polynomials, which are connected with linear sets
of so-called pseudoregulus type. We will introduce two different notions of equivalence
preserving the property of being R-qt-partially scattered and then we will analyze the
inequivalent examples in F . The results are based on the paper [3].

[1] D. Bartoli and M. Montanucci: On the classification of exceptional scattered
polynomials, J. Combin. Theory Ser. A 179 (2021).

[2] D. Bartoli and Y. Zhou: Exceptional scattered polynomials, J. Algebra 509
(2018), 507–534.

[3] D. Bartoli, G. Zini and F. Zullo: Investigating the exceptionality of scattered
polynomials, arXiv:2103.04591.

[4] A. Ferraguti and G. Micheli: Exceptional Scatteredness in prime degree, J.
Algebra, 565 (2021), 691–701.

[5] G. Longobardi and C. Zanella: Partially scattered linearized polynomials and
rank metric codes, arXiv:2009.11537.

[6] J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math.
Commun. 10(3) (2016), 475–488.
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Monday 11:45, Zoom 2

Moore polynomial sets over finite fields

Giovanni Zini

University of Campania

(This talk is based on joint work with D. Bartoli and F. Zullo.)

MSC2000: 15A15, 94B27

Let q be a prime power, n and k be positive integers with k ≤ n, and A = (α1, . . . , αk) be a
k-tuple of elements of the finite field Fqn . For any k-set I = {i0, . . . , ik−1} of non-negative
integers, define

MA,I =




αqi0
1 · · · αqik−1

1
... · · · ...

αqi0

k · · · αqik−1

k


 .

If I = {0, 1, . . . , k − 1}, MA,I is known as Moore matrix and satisfies the following prop-
erty: det(MA,I) = 0 if and only if α1, . . . , αk are Fq-linearly dependent. In [1], the set I
was defined to be a Moore exponent set for q and n when the same property holds. A clas-
sification of Moore polynomial sets I for q and n was obtained in [1] under the assumption
that q > 5 and the elements of I are small enough with respect to n. In this talk a gen-
eralization is provided, as follows. Let f = (f1(x), . . . , fk(x)) be q-linearized polynomials

of normalized degree, i.e. polynomials of the form
∑n−1

i=0 aix
qi ∈ Fqn [x]. Define

MA,f =




f1(α1) · · · fk(α1)
... · · · ...

f1(αk) · · · fk(αk)


 .

We call f a Moore polynomial set for q and n when det(MA,f ) = 0 if and only if α1, . . . , αk

are Fq-linearly dependent. Moore polynomial sets h are related to other combinatorial
objects; for instance, they correspond to Fqn-linear maximum rank-distance (MRD) codes
in Fn×n

q . To any Moore polynomial set f we attach an algebraic variety V defined over
Fqn not containing certain Fqn-rational points. We then apply algebraic-geometric tools
to obtain some partial classification results for Moore polynomial sets. For example, if
q > 5, f1(x) = x, and the degrees of f1(x), . . . , fk(x) are small enough with respect to n

(plus some non-restrictive assumptions), then f = (x, xq
s
, . . . , xq

(k−1)s
) for some s.

[1] D. Bartoli, Y. Zhou: Asymptotics of Moore exponent sets, J. Combin. Theory Ser.
A 175 (2020), 105281.

[2] D. Bartoli, G. Zini, F. Zullo: Linear maximum rank distance codes of exceptional
type. In preparation.
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Monday 10:30, Zoom 3

On deficiency problems for graphs

Andrea Freschi

University of Birmingham

(This talk is based on joint work with Joseph Hyde and Andrew Treglown.)

MSC2000: 05C35, 05C70

Motivated by analogous questions in the setting of Steiner triple systems and Latin
squares, Nenadov, Sudakov and Wagner recently introduced the notion of graph defi-
ciency. Given a global spanning property P and a graph G, the deficiency def(G) of the
graph G with respect to the property P is the smallest non-negative integer t such that
the join G ∗ Kt has property P , where G ∗ Kt is the graph obtained by adding t new
vertices to G and adding all edges incident to at least one of the new vertices. In partic-
ular, Nenadov, Sudakov and Wagner raised the question of determining how many edges
an n-vertex graph G needs to ensure G ∗Kt contains a Kr-factor (for any fixed r ≥ 3).
In this talk we present a solution to this problem. We also briefly discuss an analogous
result which forces G ∗Kt to contain any fixed bipartite (n+ t)-vertex graph of bounded
degree and small bandwidth.

arXiv Preprint: https://arxiv.org/abs/2102.04389
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Monday 10:55, Zoom 3

Extending perfect matchings to
Hamiltonian cycles in line graphs

Domenico Labbate

Universitá degli studi della Basilicata - Potenza (Italy)

(This talk is based on joint work with M. Abreu, John Baptist Gauci, Giuseppe
Mazzuoccolo and Jean Paul Zerafa.)

MSC2000: 05C70 (05C45 05C76)

A graph admitting a perfect matching has the Perfect-Matching-Hamiltonian property
(for short the PMH-property) if each of its perfect matchings can be extended to a
Hamiltonian cycle. In this talk we will present some sufficient conditions for a graph G
which guarantee that its line graph L(G) has the PMH-property. In particular, we prove
that this happens when G is (i) a Hamiltonian graph with maximum degree at most 3,
(ii) a complete graph, or (iii) an arbitrarily traceable graph. Further related questions
and open problems will be stated.
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Monday 11:20, Zoom 3

A note on the covering dimension of a graph

E.C.M. Maritz

University of the Free State

MSC2000: 05C12,05C70

Let W = {w1, w2, . . . , wk} be a vertex cover of a connected graph G. Each vertex v
of G can be described by its distance towards the vertices in W using an ordered k-
tuple r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)). The set W is a resolving vertex cover
of the graph G if no two distinct vertices u and v have the same representation, i.e.
r(u|W ) = r(v|W ) implies u = v. The smallest k for which W is a resolving vertex cover
of G is denoted by αdim(G), the covering dimension of G. For certain classes of graphs,
αdim(G) is simply equal to the vertex covering number, α(G), or the metric dimension,
dim(G) of G. Boundaries for αdim(G) are presented, as well as some results on graphs for
which the covering dimension is not equal to α(G) or dim(G).
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Choosability with Separation of Cycles and
Outerplanar Graphs

Olivier Togni

Université de Bourgogne

(This talk is based on joint work with Jean-Christophe Godin.)

MSC2000: 05C15, 05C38, 05C10

Let a, b, c and k be integers and let G be a graph. A k-list assignment L of G is a function
which associates to each vertex a set of k integers. The list assignment L is c-separating
if for any uv ∈ E(G), |L(u) ∩ L(v)| ≤ c. The graph G is (a, b, c)-choosable if for any c-
separating a-list assignment L, there exists an (L, b)-coloring of G, i.e. a coloring function
ϕ on the vertices of G that assigns to each vertex v a subset of b elements from L(v) in
such a way that ϕ(u) ∩ ϕ(v) = ∅ for any uv ∈ E(G).

This type of restricted list coloring problem, called choosability with separation, has been
introduced by Kratochv́ıl, Tuza and Voigt [1]. Most of the existing works concentrate on
the case where b = 1 and sometimes c = 1. For planar graphs, the two following questions
are still open (see [1, 2]): Does any planar graph is (4, 1, 2)-choosable? (3, 1, 1)-choosable?

In this paper we study this problem on cycles and outerplanar graphs. Our aim is to
determine, for given a, b, a ≥ b, the largest c such that G is (a, b, c)-choosable. We define
the separation number sep(G, a, b) of G as sep(G, a, b) = max{c : G is (a, b, c)-choosable}.
We define analogously the free-separation number fsep(G, a, b) when an arbitrary vertex
is precolored. Clearly, we have 0 ≤ fsep(G, a, b) ≤ sep(G, a, b) ≤ a for any graph G.

We completely determine the separation and free-separation numbers of the cycle and
derive tight bounds for these parameters on cactuses and (slightly less tight) bounds on
arbitrary outerplanar graphs. In particular, we prove that for a cactus G of finite girth
g ≥ 4, we have fsep(G, a, b) = fsep(Cg, a, b) and for an outerplanar graph G with finite
girth g ≥ 5, we have fsep(Cg−1, a, b) ≤ fsep(G, a, b) ≤ fsep(Cg, a, b), where Cn is the cycle
of order n. Further details can be found in [3].

[1] J. Kratochv́ıl, Z. Tuza, M. Voigt Brooks-type theorems for choosability with separation,
J. Graph Theory 27 (1998), 43–49.

[2] R. Škrekovski, A note on choosability with separation for planar graphs, Ars Comb.
58 (2001), 169–174.

[3] J.-C. Godin, O. Togni, Choosability with Separation of Cycles and Outerplanar
Graphs, Discuss. Math. - Graph Theory (2021), in press.
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Permutations of zerosum sets

Giovanni Falcone

Università di Palermo

(This talk is based on joint work with Marco Pavone.)

MSC2000: 05A18, 05B05, 11B75, 94B05

Given a n-dimensional vector space P over the Galois field GF(p), p ≥ 2 a prime, and
the family Bk of all the k-sets of elements of P summing up to zero, we characterise the
permutations of P inducing permutations of Bk as the invertible linear mappings of the
vector space P if p does not divide k, and as the invertible affinities of the affine space P
if p divides k. The same question is answered also in the case where the elements of the
k-sets are required to be all nonzero, and, in fact, the two cases prove to be intrinsically
inseparable [1].

If the prime p is odd and divides k, then the pair D = (P ,Bk) is a 2-(pn, k, λ) design,
whose parameter λ can be computed by a result in [3]. For p = 2, and k even, D is a 3-
(2n, k, λ3) design, and in [2] we compute the parameter λ3 explicitly. Also, for any integer
k, with 3 ≤ k ≤ 2n − 4, the k-sets of non-zero elements define a 2-(2n − 1, k, λ) design,
and, again, we compute λ explicitly. In both cases, the blocks can be seen as codewords
of weight k in the (2n − 1, 2n − n − 1, 3) Hamming code (resp., in the extended binary
Hamming code of length 2n), thus they have also been widely studied in the context of
Coding theory.

Our result describes the automorphism groups of the above design D.

Moreover, it allows one to relax the definitions of the permutation automorphism groups
of both the Hamming codes as the groups of permutations preserving just the codewords
of a given Hamming weight (the case of the (2n − 1, 2n − n− 1, 3) Hamming code being
somehow known, although never explicitly stated).

[1] Falcone G., Pavone M.: Permutations of zero-sumsets in a finite vector space. Forum
Math. 33(2), 349–359 (2021).

[2] Falcone, G., Pavone, M. Binary Hamming codes and Boolean designs. Des. Codes
Cryptogr. (2021).

[3] J. Li, D. Wan, Counting subset sums of finite abelian groups, J. Combin. Theory, Ser.
A 119 (1), pp. 170-182 (2012).
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The cap set problem: standard diagrams and new
proofs

Henry (Maya) Robert Thackeray

University of Pretoria

MSC2020: 51E20, 05B40, 05D99, 05B25, 51E15

An n-dimensional cap C of size s, or an s-cap n-flat C, is a pair (SC , FC), where FC is
an n-dimensional affine space over Z/3Z and the subset SC of FC consists of s different
points, of which no three are in a common line. The points in SC are the cap points of C.
For a given positive n ∈ Z, the cap set problem is: what is the maximum possible s for an
s-cap n-flat? It is known that the maximum sizes of 1-, 2-, 3-, 4-, 5-, and 6-dimensional
caps are 2, 4, 9, 20, 45, and 112 respectively (Davis & Maclagan 2003, Edel et al. 2002,
Potechin 2008). The problem is open for n ≥ 7.

In this talk, we define standard diagrams – these are pictures that give an intuitive view
of an established technique to solve the cap set problem – and we use them to find all
18-cap 4-flats up to isomorphism. That information is used to obtain new proofs that
45-cap 5-flats, 44-cap 5-flats, and 112-cap 6-flats are unique up to isomorphism, and to
prove that every 43-cap 5-flat is a 45-cap 5-flat with two cap points removed, and every
111-cap 6-flat is a 112-cap 6-flat with one cap point removed. This talk is based on two
upcoming papers by the author (Thackeray 2021a-b).

Davis, B. L. and Maclagan, D. 2003. The card game Set. The Mathematical Intelligencer
25 (3) 33–40. doi:https://doi.org/10.1007/BF02984846.

Edel, Y., et al. 2002. The classification of the largest caps in AG(5,3). Journal of Com-
binatorial Theory Series A 99 (1) 95–110. doi:https://doi.org/10.1006/jcta.2002.3261.

Potechin, A. 2008. Maximal caps in AG(6,3). Designs, Codes and Cryptography 46 (3)
243–259. doi:https://doi.org/10.1007/s10623-007-9132-z.

Thackeray, H. (M.) R. 2021a. The cap set problem and standard diagrams. Submitted to
Discrete Mathematics.

Thackeray, H. (M.) R. 2021b. The cap set problem: 43-cap 5-flats and 111-cap 6-flats. To
be submitted for publication.
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Additive and strongly additive block designs

Marco Pavone

Università di Palermo

MSC2000: 05B05, 05B25, 51E05

A block design is additive if it can be embedded in a commutative group in such a way
that the sum of the points in any block is zero [1]. More precisely, a 2-(v, k, λ) design
D = (P ,B) is additive if there exist a commutative group (G,+) and an injective map
ψ : P −→ G such that

ψ(X) + ψ(Y ) + ψ(Z) = 0

for any block {X, Y, Z} ∈ B.

Some geometric designs, such as the point-flat designs of an affine geometry AG(d, q) over
the Galois field GF(q), and the point-flat designs of a projective geometry PG(d, 2) over
GF(2), are basic examples of additive 2-designs, and are actually the main motivation
behind the previous definition. In [1] and [2] it is shown that all symmetric 2-designs and
all affine resolvable 2-designs are additive, whereas a Steiner triple system is additive if
and only if it is a geometric STS.

A 2-(v, k, λ) design D = (P ,B) is said to be strongly additive if there exists a distinguished
embedding of P in a commutative group (G,+), in such a way that a k-subset of P is a
block if and only if the sum of its elements is zero in G. An open problem is posed in [2]
as to whether any additive design is also strongly additive.

We recently showed that there exists a 2-(16, 4, 2) quasidouble of the affine plane of order
4 that is additive but not strongly additive [3].

[1] A. Caggegi, G. Falcone, M. Pavone, On the additivity of block designs, J. Algebr.
Comb. 45, 271–294 (2017).

[2] A. Caggegi, G. Falcone, M. Pavone, Additivity of affine designs, J. Algebr. Comb. 53,
755–770 (2021).

[3] M. Pavone, A quasidouble of the affine plane of order 4 and the solution of a problem
on additive designs, in preparation.
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Group divisible designs with block size 4 and
group sizes divisible by 3

Yudhistira A. Bunjamin

UNSW Sydney

(This talk is based on joint work with R. Julian R. Abel and Diana Combe.)

MSC2000: 05B05

A k-GDD, or group divisible design with block size k, is a triple (X,G,B) where X is
a set of points, G is a partition of X into subsets (called groups) and B is a collection
of k-element subsets of X (called blocks) such that any two points from distinct groups
appear together in exactly one block and no two distinct points from any group appear
together in any block. The group type (or type) of a k-GDD is the multiset {|G| : G ∈ G}
which denotes the group sizes.

There are a number of known necessary conditions for the existence of a GDD with
a particular group type which come from simple counting arguments. However, these
conditions are not sufficient. We say that a multiset of positive integers is a feasible group
type for a k-GDD if it satisfies the currently known necessary conditions.

This talk will focus on 4-GDDs. We will introduce the two most common techniques for
constructing GDDs and show how they can be used to construct a 4-GDD for all but a
finite number of feasible types 3t6s and 3t9s as well as other small 4-GDDs with groups
sizes divisible by 3.
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Path decompositions of random directed graphs

Alberto Espuny Dı́az

Technische Universität Ilmenau

(This talk is based on joint work with Viresh Patel and Fabian Stroh.)

MSC2000: 05C70,05C80,05C20

We consider the problem of decomposing the edges of a directed graph into as few paths
as possible. There is a natural lower bound for the number paths needed in an edge
decomposition of a directed graph in terms of its degree sequence: for each vertex v
whose outdegree d+(v) is larger than its indegree d−(v), at least d+(v) − d−(v) paths
must start at v, and conversely, if the indegree is larger than the outdegree, then at least
d−(v)− d+(v) paths must end at v. Adding this condition over all vertices, we conclude
that any edge decomposition of a directed graph D into paths must consist of at least
1
2

∑
v∈V (D) |d+(v)− d−(v)| paths.

A conjecture due to Alspach, Mason and Pullman from 1976 concerning edge decompo-
sitions of tournaments into as few paths as possible states that this bound is correct for
tournaments of even order. The conjecture was recently resolved for large tournaments
in works by Lo, Patel, Skokan and Talbot, and by Girão, Granet, Kühn, Lo and Osthus.
In our new work, we investigate to what extent the conjecture holds for directed graphs
in general. In particular, we prove that the conjecture holds with high probability for the
random directed graph Dn,p for a large range of p (thus proving that it holds for most
directed graphs). To be more precise, we define a deterministic class of directed graphs
for which we can show the conjecture holds, and later show that the random digraph
belongs to this class with high probability. Our techniques involve absorption and flows.
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Trees in tournaments

Alistair Benford

University of Birmingham

(This talk is based on joint work with Richard Montgomery.)

MSC2000: 05C20

Given an n-vertex oriented tree T , what is the smallest size a tournament G must be, in
order to guarantee G contains a copy of T? A strengthening of Sumner’s conjecture poses
that it is enough for G to have (n + k − 1) vertices, where k is the number of leaves of
T . Recently, Dross and Havet used a method of median orders to prove that this is true
for arborescences – i.e. trees with edges oriented outwards from a specified root vertex.
We show that median orders can make further progress towards (n+ k − 1), by proving
that there exists a constant C such that |G| = (n+Ck) is enough, as well as confirming
a separate conjecture that |G| = (n+ k− 2) is enough, provided we allow n to grow large
with k fixed. In this talk we shall discuss these results and further progress that could be
made.
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Spanning trees in dense directed graphs

Amarja Kathapurkar

University of Birmingham

(This talk is based on joint work with Richard Montgomery.)

MSC2000: 05C20, 05C05, 05C35

In 2001, Komlós, Sárközy and Szemerédi proved that for sufficiently large n, every n-
vertex graph with minimum degree at least n/2 + o(n) contains a copy of every n-vertex
tree with maximum degree at most O(n/ log n). We prove the corresponding result for
directed graphs. That is, we show that for sufficiently large n, every n-vertex directed
graph with minimum semidegree at least n/2 + o(n) contains a copy of every n-vertex
oriented tree whose underlying maximum degree is at most O(n/ log n).

This improves a recent result of Mycroft and Naia, which requires the oriented trees to
have underlying maximum degree at most ∆, for any constant ∆ and sufficiently large
n. In contrast to the previous work on spanning trees in dense directed or undirected
graphs, our approach does not use Szemerédi’s regularity lemma.
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Path decompositions of tournaments

Bertille Granet

University of Birmingham

(This talk is based on joint work with António Girão, Daniela Kühn, Allan Lo, and
Deryk Osthus.)

MSC2000: 05C20, 05C35, 05C38, 05C70, 05D40

In 1976, Alspach, Mason, and Pullman conjectured that any tournament T of even order
can be decomposed into exactly ex(T ) paths, where ex(T ) := 1

2

∑
v∈V (T ) |d+T (v) − d−T (v)|

(d+T (v) and d−T (v) denote the out and indegree of v in T , respectively). We prove this
conjecture for all sufficiently large tournaments. We also prove an asymptotically optimal
result for tournaments of odd order.
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Improved bounds on the cop number of a graph
drawn on a surface

Florian Lehner

Graz University of Technology

(This talk is based on joint work with Joshua Erde.)

MSC2000: 05C57; 91A46; 91A24

The cops-and-robber game is a game on a graph played between two players controlling
a set of cops and a single robber, respectively. The rules of the game are as follows: In
the first round both the cops and the robber choose starting vertices. After that, in even
rounds each cop can move to a neighbouring vertex, and in odd rounds the robber can
move to a neighbouring vertex. The cops win, if after some finite number of rounds one
of them occupies the same vertex as the robber.

A graph G is called k-cop win, if there is a winning strategy for a set of k cops, the
cop number c(G) is the least number k such that G is k-cop win. It is known that if a
connected graph G can be embedded in a surface of genus g, then c(G) can be bounded by
a linear function in g. Schröder showed that c(G) ≤ 3

2
g+ 3 and conjectured that this can

be improved to c(G) ≤ g(G)+3. Recently, by relating the cops-and-robber to a topological

game, Bowler, Erde, Pitz, and I gave the current best known bound c(G) ≤ 4g(G)
3

+ 10
3

.

In this talk we show, how this topological game can be combined with techniques intro-
duced by Schröder to improve this bound and show that c(G) ≤ (1 + o(1))(3−

√
3)g.
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The Toucher-Isolator game

Mirjana Mikalački

Department of Mathematics and Informatics, Faculty of Sciences, University of Novi
Sad, Novi Sad, Serbia

(This talk is based on joint work with Chris Dowden, Mihyun Kang and Miloš
Stojaković.)

MSC2000: 05C57, 91A46

In this talk we introduce a new positional game called ‘Toucher-Isolator’, which is a
quantitative version of a Maker-Breaker type game. The playing board is the edge set
of a given graph G. The two players, Toucher and Isolator, claim edges alternately. The
aim of Toucher is to ‘touch’ as many vertices as possible (i.e. to maximise the number of
vertices that are incident to at least one of her chosen edges), and the aim of Isolator is
to minimise the number of vertices that are so touched.

We analyse the number of untouched vertices u(G) at the end of the game when both
Toucher and Isolator play optimally, obtaining results both for general graphs and for
particularly interesting classes of graphs, such as cycles, paths, trees, and k-regular graphs.
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Burning giant sequoias

Paul Bastide

ENS Rennes

(This talk is based on joint work with Marthe Bonamy, Pierre Charbit, Théo Pierron,
Mikaël Rabie.)

MSC2000: 05C05

How fast can a rumor propagate in a graph? One measure of that, introduced by Bonato,
Janssen and Roshanbin [2], is the burning number b(G) of a graph G. At step 1, we set a
vertex on fire. At every step i ≥ 2, all neighbours of a vertex on fire catch fire themselves,
and we set a new vertex on fire. If at the end of step k the whole graph is on fire, then
the graph is k-burnable. The burning number of G is defined to be the least k such that
G is k-burnable.

A graph with n isolated vertices is trivially not (n− 1)-burnable. We therefore focus on
connected graphs. Paths are an interesting special case. For a path Pn on n vertices, it
is not hard to check that b(Pn) = d√ne. When introducing the notion, Bonato et al. [2]
conjectured that paths are, essentially, the worst case for the burning number of a graph.

Conjecture 1 (Bonato et al. [2]). Every connected graph G satisfies b(G) ≤ d
√
|V (G)|e.

Conjecture 1 is only known to hold with a constant factor. We focus on trees that are
taller than they are wide. More formally, we use the following definition.

Definition 2. The growth of a tree T is the smallest k such that all vertices in T are
within distance k of some path P in T .

Note that a caterpillar has growth at most 1. The conjecture has only been confirmed for
trees with growth at most 2. We refer the reader to a nice recent survey on the topic for
further details [1]. In this talk we present the following theorem.

Theorem 3. For any tree T on n vertices, if n is large enough compared to the growth
of T , then b(T ) ≤ d√ne+ 1.

We also obtain that for any fixed k, in order to prove Conjecture 1 for trees of growth at
most k, it suffices to verify it for a finite number of them.

[1] Anthony Bonato. A survey of graph burning. arXiv preprint arXiv:2009.10642, 2020.

[2] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. Burning a graph is hard,
2015.
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Combinatorial aspects of Abelian and stochastic
sandpile models on complete graphs

Thomas Selig

Xi’an Jiaotong-Liverpool University

MSC2000: 05A15, 05A19, 60J10

The sandpile model is a dynamic process on a graph G. At each unit of time, a grain
of sand is added to a randomly selected vertex of G. When this causes the number of
grains at that vertex to exceed a certain threshold (usually its degree), that vertex is
said to be unstable, and topples, sending grains to (some of) its neighbours in G. In the
standard Abelian sandpile model (ASM), topplings are deterministic: one grain is sent to
each neighbour of an unstable vertex. In the stochastic sandpile model (SSM) an unstable
vertex flips a coin for each neighbour to decide whether it should send a grain or not [1].
Of central interest in sandpile model research are the recurrent states, those that appear
infinitely often in the long-time running of the model.

In this talk, we focus on the Abelian and stochastic sandpile models on complete graphs.
We first recall the Cori-Rossin bijection between the set of recurrent states on the complete
graph Kn+1 and the set of n-parking functions [2]. We then study the SSM on complete
graphs. We show that the set of recurrent states of the SSM is given by the integer lattice
points in the parking function polytope. This allows us to recover a well-known result:
that the number of integer lattice points in the n-dimensional permutation polytope is
the number of labeled spanning forests on n vertices.

[1] Y. Chan, J.-F. Marckert, and T. Selig. A natural stochastic extension of the sandpile
model on a grpah. Journal of Combinatorial Theory - Series A, 120(7): 1913-1928,
2013.

[2] R. Cori and D. Rossin. On the sandpile group of a graph. European Journal of
Combinatorics, 21:447–459, 2000.

[3] T. Selig. On the stochastic sandpile model on complete graphs. In preparation.
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Clique immersions and independence number

Daniel Quiroz
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(This talk is based on joint work with Sebastián Bustamante, Maya Stein, José Zamora.)

MSC2000: 05C15, 05C83

We give lower bounds for the order of the largest clique immersion in a graph with fixed in-
dependence number. This problem is motivated by an immersion-analogue of Hadwiger’s
conjecture, which, if true, would imply that every n-vertex graph with independence num-
ber α has a clique immersion of order at least n/α. Our bounds improve, for all α ≥ 3,
previous results of Gauthier, Le and Wollan.
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New Results on α-critical Graphs

Craig Larson

Virginia Commonwealth University

(This talk is based on joint work with Jack Edmonds & Mark Kayll.)

MSC2000: 05C69,05C75

A graph G is α-critical if, for every edge xy, the independence number of G − xy is
greater than the independence number of G. The study of critical graphs goes back to
Dirac in the 1950s, and of α-critical graphs to Erdős and Gallai in the 1960s. They are
deeply connected to the study of the independence structure of graphs and to the study
of the stable set polytope. We present some new results—developed in connection with
an investigation of two graph decompositions—as well as new proofs of classical results
of Wessel, Andrásfai and Lovász.
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On the 486-vertex distance-regular graphs of
Koolen–Riebeek and Soicher

Robert F. Bailey
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(This talk is based on joint work with Daniel R. Hawtin.)

MSC2000: 05C25, 05E30, 20B25, 94B25

In this talk, we consider three imprimitive distance-regular graphs with 486 vertices and
diameter 4: the Koolen–Riebeek graph (which is bipartite), the Soicher graph (which is
antipodal), and the incidence graph of a symmetric transversal design obtained from the
affine geometry AG(5, 3) (which is both). We will show that each of these is preserved by
the same rank-9 action of the group 35 : (2×M10), and the connection is explained using
the ternary Golay code.

[1] R. F. Bailey and D. R. Hawtin, On the 486-vertex distance-regular graphs of Koolen–Riebeek and
Soicher, Electronic J. Combin. 27 (2020), P3.13 (12pp).

[2] A. E. Brouwer, J. H. Koolen and R. J. Riebeek, A new distance-regular graph associated to the
Mathieu group M10, J. Algebraic Combin. 8 (1998), 153–156.

[3] L. H. Soicher, Three new distance-regular graphs, European J. Combin. 14 (1993), 501–505.
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On some recent results on 2-(v, k, λ) symmetric
designs with small λ

Sanja Rukavina

University of Rijeka

(This talk is based on joint work with Dean Crnković .)

MSC2000: 05B05, 94B05

Fundamental problems of design theory are those of existence and classification of designs
with certain parameter set. In this talk we are interested in biplanes and triplanes, i.e.,
in 2-(v, k, 2) and 2-(v, k, 3) symmetric designs.

The existence of a biplane with parameters (121, 16, 2) is an open problem. Recently, in
[1], it has been proved by Alavi, Daneshkhah and Praeger that the order of an automor-
phism group of a possible biplane D of order 14 divides 27 · 32 · 5 · 7 · 11 · 13. We show that
such a biplane do not have an automorphism of order 11 or 13, and thereby establish
that |Aut(D)| divides 27 · 32 · 5 · 7. Further, we exclude a possible action of some small
groups of order divisible by five or seven, on a biplane with parameters (121, 16, 2).

Triplanes of order 12, i.e. symmetric (71, 15, 3) designs, have the greatest number of points
among all known triplanes and it is not known if a triplane (v, k, 3) exists for v > 71. All
146 previously known (71, 15, 3) designs admit an action of an automorphism of order 3.
We give the first example of a triplane of order 12 that does not admit an automorphism
of order 3, obtained by using binary linear codes.

[1] S. H. Alavi, A. Daneshkhah, C. E. Praeger, Symmetries of biplanes, Des. Codes Cryptogr. 88 (2020),
2337–2359.

[2] D. Crnković, D. Dumičić Danilović, S. Rukavina, On automorphism groups of a biplane (121,16,2),
preprint, arXiv:2010.12944

[3] D. Crnković, S. Rukavina, L. Simčić, On triplanes of order twelve admitting an automorphism of
order six and their binary and ternary codes, Util. Math. 103 (2017), 23–40.

[4] S. Rukavina, Some new triplanes of order twelve, Glas. Mat. Ser. III 36(56) (2001), 105–125.
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On intersecting families of independent sets in
trees
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Virginia Commonwealth University, USA

(This talk is based on joint work with Vikram Kamat, Villanova University, USA.)

MSC2000: 05D05 (05C05)

A family of sets is intersecting if every pair of its sets intersect. A star is a family with
some element (a center) in each of its sets. The classical 1961 result of Erdős, Ko, and
Rado states that every intersecting family of r-sets with r ≤ n/2 has size at most that of
a star. There are many clever and beautiful proofs of this result; we recently discovered
a new injective proof [2].

Let G be a graph, α(G) be its independence number, and µ(G) be the size of the smallest
maximal independent set in G. We say that G is r-EKR if, among all intersecting families
of independent r-sets of G, the largest is attained by a star. Holroyd and Talbot conjec-
tured that every graph G is r-EKR for all 1 ≤ r ≤ µ(G)/2. We verified the conjecture in
[1] for all chordal graphs containing an isolated vertex.

For graphs without isolated vertices it is difficult to determine the center of the largest
star, which is often necessary to prove that they are EKR. A tree has the r-leaf property
if its largest r-star occurs on one of its leaves. We proved in [1] that every tree T has the
r-leaf property when r ≤ 4, but counterexamples exist when r ≥ 5. Thus we are led to
ask which trees T have the leaf property: the r-leaf property for all r ≤ α(T ).

A split vertex in a tree is a vertex of degree at least 3. A spider is a tree with exactly one
split vertex. In [3] we prove that all spiders have the leaf property, and we characterize
which of its leaves are maximum star centers. A pendant tree is one for which each of its
split vertices is adjacent to a leaf. Estrugo and Pastine recently showed that all pendant
trees have the leaf property. Here we also consider pendant trees with exactly two split
vertices and provide partial results on the locations of their maximum star centers.

[1] G. Hurlbert and V. Kamat, Erdős–Ko–Rado theorems for chordal graphs and trees,
J. Combin. Theory Ser. A 118 (2011), no. 3, 829–841.

[2] G. Hurlbert and V. Kamat, New injective proofs of the Erdős-Ko-Rado and Hilton-
Milner theorems, Discrete Math. 341 (2018), no. 6, 1749–1754.

[3] G. Hurlbert and V. Kamat, On intersecting families of independent sets in trees,
arXiv:1620.08153 (2021).
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The number of locally p-stable functions on Qn

Asier Calbet

Queen Mary University of London

MSC2000: 05A16

A Boolean function f : V → {−1, 1} on the vertex set of a graph G = (V,E) is
locally p-stable if for every vertex v the proportion of neighbours w of v with f(v) = f(w)
is exactly p. This notion was introduced by Gross and Grupel in [1] while studying a prob-
lem on scenery reconstruction. They give an exponential type lower bound for the number
of isomorphism classes of locally p-stable functions when G = Qn is the n-dimensional
Boolean hypercube and ask for more precise estimates. We provide such estimates by
improving the lower bound to a double exponential type lower bound and finding a
matching upper bound. We also show that for a fixed k and increasing n, the number of
isomorphism classes of locally (1 − k/n)-stable functions on Qn is eventually constant.
The proofs use the Fourier decomposition of functions on the Boolean hypercube.

[1] Renan Gross and Uri Grupel. Indistinguishable sceneries on the Boolean hypercube.
Combinatorics, Probability and Computing, Volume 28, Issue 1, January 2019 , pp.
46 - 60.
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Del Pezzo Surfaces of Rank Two over Finite
Fields

Anton Betten

Colorado State University

(This talk is based on joint work with Fatma Karaoglu.)

MSC2000: 05E14

A del Pezzo surface of rank two is a double cover of a plane quartic curve. Smooth
quartics have 28 bitangents and are related to cubic surfaces with 27 lines using projection
from a point not on any line. The classification problem is the problem of determining
the equivalence classes of the objects under the action of the various projective groups.
Despite a long history of research, the classification problem for cubic surfaces, del Pezzo
surfaces and quartic curves is still open. Over finite fields, the problem can be attacked
using computer.

We will describe recent progress on the classification of del Pezzo surfaces over small fields.
This is based on earlier work of the speakers on the classification of cubic surfaces with 27
lines over small finite fields. Our goal is to identify interesting infinite families of objects,
and to determine their properties, including their automorphism groups. On the geomet-
ric side, we are interested in Kowalevski points, which are points where four bisecants
intersect. These are similar to Eckardt points on cubic surfaces, where three lines meet.
Kowalevski in 1884 observed that such points are related to involutorial automorphisms
of the curve.

Anton Betten and Fatma Karaoglu. Cubic surfaces over small finite fields. Des. Codes
Cryptogr., 87(4):931–953, 2019.

I. Dolgachev, Endomorphisms of complex abelian varieties, Milan, February 2014
http://www.math.lsa.umich.edu/ idolga/MilanLect.pdf

F.E. Eckardt. Ueber diejenigen Flächen dritten Grades, auf denen sich drei gerade Linien
in einem Punkte schneiden, Math. Ann. 10 (1876), 227-272.

J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, New York, 1985. Oxford
Science Publications.

J. W. P. Hirschfeld. del Pezzo surfaces over finite fields. Tensor (N.S.), 37(1):79–84, 1982.

S. Kowalevski, Über Reduction einer bestimmten Klasse Abelscher Integrale 3ten Ranges
auf elliptische Integrale, Acta Mathematica 4 (1884), 393–416.
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Generalized pentagonal geometries

Tony Forbes

(ORCID: 0000-0003-3805-7056)

(This talk is based on joint work with Carrie Rutherford (LSBU).)

MSC2000: 05B25

In 2013, S. Ball, J. Bamberg, A. Devillers and K. Stokes introduced the concept of a
pentagonal geometry as a generalization of the pentagon. A pentagonal geometry PENT(k,
r) is a partial linear space where every line is incident with k points, every point is incident
with r lines, and for each point x there is a line incident with precisely those points that
are not collinear with x. The pentagon is a PENT(2,2).

In this talk we go a step further to define a generalized pentagonal geometry, PENT(k, r,
w): a partial linear space where every line is incident with k points, every point is incident
with r lines, and for each point x the points not collinear with x form the point set of
a Steiner system S(2, k, w) whose blocks are lines of the geometry. This is a reasonable
extension. An S(2, k, w) has the same relevant property as a single line: any two points
are collinear. Observe that a line in a PENT(k, r) is an S(2, k, k) and that the pentagon
is a PENT(2,2,2).

We explore basic properties and the existence spectrum of these structures.

68



Monday 15:00, Zoom 5

Explicit asymptotic formulae for multiplicative
combinatorial sructures.

B.L. Granovsky

MSC2000: 05A16,05A17

We obtain explicit formulae for the solution of the Khintchine type equation for multi-
plicative combinatorial models. The latter setting encompasses a wide class of weighted
partitions with generating functions of multiplicative form. Our main result states that
the solution is given by an infinite power series with coefficients which are polynomials
specified explicitly by their roots. As in the case of the original Khintchine equation(1954),
the solution obtained is the point of minimum of the entropy(=logarithm of the generating
function) of the associated scheme of statistical mechanics.

Our presentation is based on the preprint [1] and it continues the author’s paper [2] and
two joint papers [3],[4] with Dudley Stark.

[1] Granovsky, B. Explicit asymptotic formulae for multiplicative combinatorial sruc-
tures, (2021), preprint

[2] Granovsky, B. Asymptotic enumeration by Khintchine- Meinardus probabilistic
method: Necessary and sufficient conditions for exponential growth, Ramanujan
J.(2018),45:739-765.

[3] Granovsky, B. and Stark, D. (2012), A Meinardus theorem with multiple singulari-
ties. Comm. Math. Phys. 314 329–350.

[4] Granovsky, B, Stark, D (2015), Developments in the Khintchine-Meinardus proba-
bilistic method for asymptotic enumeration, EJC, 22,4.
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The m = 2 amplituhedron and the hypersimplex:
signs, clusters, triangulations, Eulerian numbers

Matteo Parisi

University of Oxford, Mathematical Institute
Princeton University, Visiting Sachs Scholar

(This talk is based on joint work with L. K. Williams and M. Sherman-Bennett [1].)

MSC2000: 05E14, 13F60

The hypersimplex ∆k+1,n is the image of the Grassmannian Grk+1,n and the positive
Grassmannian Gr≥0

k+1,n under the well-knwon moment map [2]. It is a polytope of codi-
mension 1 inside Rn. Meanwhile, the amplituhedron An,k,2 is the projection of the positive
Grassmannian Gr≥0

k,n into the Grassmannian Grk,k+2 under the amplituhedron map Z̃ [3].
Introduced in the context of the physics of scattering amplitudes, it is not a polytope and
has full dimension 2k inside Grk,k+2. Nevertheless, as was first discovered in [4], these
two objects appear to be closely related via T-duality. In this work we draw new striking
connections between ∆k+1,n and An,k,2. We show that inequalities cutting out positroid
polytopes – images of positroid cells of Gr≥0

k+1,n under the moment map – translate into

sign conditions characterizing the T-dual Grasstopes – images of positroid cells of Gr≥0
k,n

under the amplituhedron map. Moreover, we subdivide the amplituhedron into chambers
enumerated by the Eulerian numbers, just as the hypersimplex can be subdivided into
simplices enumerated by the Eulerian numbers. We use this to prove one direction of the
conjecture of [4]: whenever a collection of positroid polytopes triangulates the hypersim-
plex, the collection of T-dual Grasstopes triangulates the amplituhedron. Along the way,
we prove several more conjectures: Arkani-Hamed–Thomas–Trnka’s conjecture that An,k,2

can be characterized using sign conditions [5], Lukowski–Parisi–Spradlin–Volovich’s con-
jectures about generalized triangles (Grasstopes in a triangulation of An,k,2), and m = 2
cluster adjacency [6]. Finally, we find novel cluster structures in the amplituhedron.

[1] MP, M. Sherman-Bennett, and L. K. Williams. The m = 2 amplituhedron and the hypersimplex:
signs, clusters, triangulations, Eulerian numbers. Preprint, arXiv:2104.08254.

[2] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova. Combinatorial geometries,
convex polyhedra, and Schubert cells. Advances in Mathematics, 63(3):301–316, 1987.

[3] N. Arkani-Hamed and J. Trnka. The Amplituhedron. J. of High Energy Physics 2014, 30.

[4] T. Lukowski, MP, L. K. Williams. The positive tropical Grassmannian, the hypersimplex, and the
m = 2 amplituhedron. Preprint, arXiv:2002.06164.

[5] N. Arkani-Hamed, H. Thomas, and J. Trnka. Unwinding the Amplituhedron in Binary. J. High
Energy Physics 2018, 16.

[6] T.  Lukowski, MP, M. Spradlin A. Volovich. Cluster Adjacency for m = 2 Yangian Invariants. J.
High Energy Physics 2019, 10.
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The language of self-avoiding walks, part I

Wolfgang Woess

Institute of Discrete Mathematics, Graz University of Technology, Austria

(This talk is based on joint work with with Christian Lindorfer [1].)

MSC2000: 05C25, 20F10, 68Q45

Let X be the Cayley graph of a finitely generated (typically infinite) group with respect
to a finite, symmetric set Σ of generators. We consider the edges to be oriented, so that
each edge is labelled by an element of Σ. Consider the language of all words over Σ which
can be read along a self-avoiding walk starting at the group identity. We characterise
under which conditions on the graph structure this language is regular or context-free.
This is the case if and only if the graph has more than one end, and the size of all ends is
1, or at most 2, respectively. More generally, this holds for any deterministically labelled,
quasi-transitive graph.

[1] Ch. Lindorfer and W. Woess: The language of self-avoiding walks, Combinatorica 40
(2020) 691-720.
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The language of self-avoiding walks, part II

Christian Lindorfer

Institute of Discrete Mathematics, Graz University of Technology, Austria

(This talk is based on joint work with Florian Lehner [1].)

MSC2000: 05C25, 20F10, 68Q45

Let X be the Cayley graph of a finitely generated group with respect to some finite,
symmetric generating set, where each directed edge is labelled with its generator. The
language of self-avoiding walks consists of all words which can be read along self-avoiding
walks on X.
In this talk we discuss a recent characterisation of the language of self-avoiding walks on
virtually free groups. This language is k-multiple context-free if and only if the size of all
ends of X is at most 2k. More generally, this result also holds for deterministically labelled
quasi-transitive graphs. Moreover, our approach shows that the connective constant of
any thin-ended quasi-transitive graph is an algebraic number.

[1] F. Lehner and C. Lindorfer: Self-avoiding walks and multiple context-free languages,
preprint, arXiv:1205.2525 [math.CO] (2020).
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Large Arcs in Small Planes

Awss Alogaidi

Middle Technical University

(This talk is based on joint work with Anton Betten from Colorado State University.)

MSC2000: 14Nxx

An arc of degree d in a projective plane is a set of n points with no more than d of them
collinear. It is denoted as (n, d)−arc. Examples arise from algebraic curves of degree d. An
important task is to determine for each value of d and q the largest value of n for which
an (n, d)−arc exists. We are interested in studying large arcs of degree d in PG(2, q) for
small q. A related problem is that of classifying arcs up to projective equivalence. The
talk will survey some of the techniques which are used to classify arcs: Complete searches
with classification using poset classification; liftings of smaller arcs using techniques of
Cook, Ball and others; isomorph classification using canonical forms; parallel computing.
Iterestingly, largest arcs do not always arise from curves of degree d, so it is of interest
to build models for the known examples. Such models may lead to new constructions of
arcs and perhaps to infinite families. We will consider specific problems from the plane
PG(2, 11), with a particular emphasis on arcs of degree 5.
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Small complete caps in PG(4n + 1, q)

Francesco Pavese

Polytechnic University of Bari

(This talk is based on joint work with A. Cossidente, B. Csajbók and G. Marino.)

MSC2000: 51E22, 51E20

Let PG(r, q) denote the r-dimensional projective space over the finite field with q elements
Fq. A k-cap of PG(r, q) is a set of k points no three of which are collinear. A k-cap of
PG(r, q) is said to be complete if it is not contained in a (k + 1)-cap of PG(r, q). The
study of caps is not only of geometrical interest, but arises from coding theory. Indeed,
by identifying the representatives of the points of a complete k-cap of PG(r, q) with
columns of a parity check matrix of a q–ary linear code, it follows that (apart from three
sporadic exceptions) complete k-caps of PG(r, q) with k > r + 1 and non-extendable
linear [k, k − r − 1, 4]q 2–codes are equivalent objects.

One of the main issue is to determine the spectrum of the sizes of complete caps in
a given projective space and in particular their maximal and minimal possible values.
For the size t2(r, q) of the smallest complete cap in PG(r, q), the trivial lower bound is

t2(r, q) >
√

2q
r−1
2 . Apart from the cases q even and r odd, all known infinite families of

complete caps explicitly constructed in PG(r, q) have size far from the trivial bound.

In this talk I will describe the construction of a complete cap of PG(4n + 1, q) of size
2(q2n+. . .+1) that is obtained by projecting two disjoint Veronese varieties of PG(n(2n+
3), q) from a suitable (2n2 − n − 2)-dimensional projective space. This establishes that
the trivial lower bound on t2(4n+ 1, q) is essentially sharp.
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Power sum polynomials and the ghosts behind
them

Silvia M.C. Pagani

Università Cattolica del Sacro Cuore, Brescia, Italy

(This talk is based on joint work with Silvia Pianta.)

MSC2000: 11T06, 51E15, 52C05

The Rédei factor of a point P ∈ PG(n, q) is the linear polynomial in n + 1 variables,
whose coefficients are the coordinates of P . Given a subset S of PG(n, q), its power sum
polynomial is the sum of the (q−1)-th powers of the Rédei factors associated to the points
of S [3]. Differently from the well-known Rédei polynomial, a same power sum polynomial
may be shared by several subsets. Such a lack of uniqueness offers a straightforward
connection to other inverse problems, in particular to discrete tomography, where the
aim is to reconstruct the internal of an object, seen as a density function, from the
knowledge of its projections. A central role is played by ghosts, which are functions with
null projections and therefore can be added to a solution of a tomographic problem to
obtain another solution [1].

In this talk, partly published as [2], we will deal with the two-dimensional case and define
the counterpart of tomographic ghosts in the finite geometry context as those subsets
with associated null power sum polynomial, which are called ghosts as well. These are
also called generalized Vandermonde sets in [3]. The binary operation which makes subsets
and ghosts interact is the multiset sum (modulo the field characteristic).

We will prove some general results on ghosts in PG(2, q), present some classes of examples
and explicitly compute their number in case q is a prime.

[1] L. Hajdu, R. Tijdeman. Algebraic aspects of discrete tomography. J. Reine Angew.
Math. 534, pp. 119–128 (2001).

[2] S.M.C. Pagani, S. Pianta. Power sum polynomials in a discrete tomography perspec-
tive. Lecture Notes in Comput. Sci. 12708, pp. 325-337 (2021).

[3] P. Sziklai. Polynomials in Finite Geometry. Manuscript. Available online at
http://web.cs.elte.hu/ sziklai/polynom/poly08feb.pdf
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On the Multiplicity of a Nonintersecting Chord
Diagram Generated by Chord Expansions

Tomoki Nakamigawa

Shonan Institute of Technology

MSC2000: 05A15

For a set of vertices V on a circumference, let C(V ) denote the set of chords having their
endvertices in V . A chord diagram E ⊂ C(V ) is a set of chords such that they share no
endvertex with each other. The expansion of a chord diagram E with respect to a pair of
crossing chords S = {ac, bd} ⊂ E is an operation replacing E with two chord diagrams
E1 = (E \ S)∪ {ad, bc} and E2 = (E \ S)∪ {ab, cd}. Beginning from a chord diagram E,
by a finite sequence of expansions, we have a multiset of nonintersecting chord diagrams
NCD(E), which is uniquely determined not depending on the choice of expansions. For
a chord diagram E, and for a nonintersecting chord diagram F , let m(E,F ) denote the
multiplicity of F in NCD(E).

The main purpose of the paper is to study m(E,F ) in a general case. For a triangulation
T on V and for a chord diagram E ⊂ C(V ), let wT (E) denote a Laurent polynomial of E
with respect to T , which is naturally defined in the setting of cluster algebra. A variable
of wT (E) is corresponding to a chord of T , and if all chords of F are chords of T , then
wT (F ) is a monomial. In this paper, it is shown that for F ⊂ T , m(E,F ) equals the
coefficient of a monomial wT (F ) in a Laurent polynomial wT (E).

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
19K03607.
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Graphs Reconstructible from One Card
and a One–Dimensional Eigenspace

Irene Sciriha

Department of Mathematics, Faculty of Science, University of Malta, Msida, Malta

MSC2000: 05C60, 05C07 05C50 15A18 05B20

The deck D of a graph G is its multiset of one-vertex deleted subgraphs. We prove that
a graph G with a given generator of the eigenspace of any simple eigenvalue µ of the
0–1–adjacency matrix is reconstructed uniquely from one µ–card of D, that is, a one-
vertex deleted subgraph that does not have µ as an eigenvalue. If the generator of the
µ–eigenspace is known to be full, that is if it has no zero entries, the graph is said to
be a µ–nut graph. For a µ–nut graph, the reconstruction holds from any card. No two
non-isomorphic µ–nut graphs having a common µ–card, have the same associated one-
dimensional eigenspace. Moreover two non-isomorphic µ–nut graphs with the same simple
eigenvalue and associated eigenspace have no card in common.
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diameter of a generalization of generalized
petersen graphs

Laila Loudiki

LMC Laboratory, Department of Mathematics and Computer Science, Polydisciplinary
Faculty of Safi, Cadi Ayyad University, Safi, Morocco

(This talk is based on joint work with Mustapha Kchikech and EL Hassan Es-Saky.)

MSC2000: 05C12, 05C75

The edge contraction of the generalized Petersen graph GPG(n, s) gives the well known
circulant graph Cn(1, s). By a reverse procedure,GPG(n, s) can be obtained from Cn(1, s).
This natural relation between these graphs led Beenker and Van Lint [1] to prove that if
Cn(1, s) has diameter d, then GPG(n, s) has diameter at least d+ 1, and at most d+ 2.

In [2], we are providing necessary and sufficient conditions so that the diameter of
GPG(n, s) is equal to d+ 1, and sufficient conditions so that the diameter of GPG(n, s)
is equal to d+ 2. Afterwards, we are also showing that there exists an algorithm comput-
ing the diameter of generalized Petersen graphs with running time O(logn). And, we are
giving exact values for the diameter of GPG(n, s) for almost all cases of n and s.

In this work, we present a generalization of generalized Petersen graphs, which we call
GGPG-graphs, that differs from generalized Petersen graphs in allowing the number of
chords to be greater than 1. The purpose is to determine the diameter of GGPG-graphs.
In particular, we prove that if the circulant graph has diameter d, then the GGPG-graph
has diameter at least d+ 1 and at most d+ 2. Then, we provide necessary and sufficient
conditions so that the diameter of GGPG-graphs is equal to d+1, and sufficient conditions
so that the diameter of GGPG-graphs is equal to d+ 2.

[1] G. F. M. Beenker and J. H. Van Lint, Optimal generalized Petersen graphs, Philips.
J. Res. 43(2) (1988) 129–136.

[2] L. Loudiki, M. Kchikech and E. H. Essaky, Diameter of generalized Petersen graphs,
arXiv preprint arXiv:2102.10397 (2021).
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Algorithm for Computing the Total Vertex
Irregularity Strength of the Generalized

Petersen Graphs

Rikayanti

Institut Teknologi Bandung, Indonesia

(This talk is based on joint work with Suhadi Wido Saputro and Edy Tri Baskoro.)

MSC2000: 05C78, 05C85

The total vertex irregularity strength of a graph was introduced by Bača, Jendrol’, Miller,
and Ryan (2002). Let G = (V,E) be a graph. Any surjective mapping α : V ∪ E →
{1, 2, · · · , t} is called a t-labeling on G. The weight wt(u) of a vertex u in G, under α,
is defined as wt(u) = α(u) +

∑
uw∈E α(uw). The labeling α of G is called a total vertex

irregular labeling if all weights of the vertices are distinct, namely wt(u) 6= wt(w) for any
distinct vertices u and w. The total vertex irregularity strength of the graph G, denoted
by tvs(G), is the smallest integer k such that G admits a total vertex irregular k-labeling.
Nurdin, et al. (2010) has derived a lower bound of the total vertex irregularity strength
of any connected graph G with minimum degree δ and maximum degree ∆, namely:

tvs(G) ≥ max

{⌈
δ+nδ
δ+1

⌉
,
⌈
δ+nδ+nδ+1

δ+2

⌉
, · · · ,

⌈
δ+

∑∆
j=δ nj

∆+1

⌉}
,

where ni is the number of vertices of degree i in G. For n ≥ 3 and 1 ≤ k ≤ bn/2c, the
generalized Petersen graph P (n, k) is defined as the graph with vertex set V (P (n, k)) =
{vi, ui : 0 ≤ i ≤ n− 1} and edge set E(P (n, k)) = {vivi+1, viui, uiui+k : 0 ≤ i ≤ n− 1, all
subscripts are in mod n}. In this talk, we present an algorithm for computing tvs(P (n, k))
for any n ≥ 3 and 1 ≤ k ≤ bn/2c.

Keywords: total vertex irregularity strength, generalized Petersen graphs, algorithm.
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Covering Symmetric Subsets of the Boolean
Boolean cube with Affine Hyperplanes

S. Venkitesh

Indian Institute of Technology Bombay

MSC2000: 05D40,68R05

Alon and Füredi (1993) proved that any family of hyperplanes that covers every point
of the Boolean cube {0, 1}n, except one, must contain at least n hyperplanes. We obtain
two extensions of this result to hyperplane covers of symmetric subsets of the Boolean
cube (subsets that are closed under permutations of coordinates), over the reals.

As a main tool for proving our results, we introduce finite-degree hyperplane closures, a
family of closure operators defined using hyperplane covers, for subsets of the Boolean
cube. We obtain a combinatorial characterization of the hyperplane closures of symmetric
subsets of the Boolean cube, over the reals, which enables us to compute these hyperplane
closures efficiently. This characterization may also be of independent interest.
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On transversals, near transversals, and
diagonals in iterated groups and quasigroups

Anna Taranenko

Sobolev Institute of Mathematics, Novosibirsk, Russia

MSC2000: 05B15; 05D15; 05A16; 05E15; 20N05

A d-dimensional latin hypercube of order n is a d-dimensional array of the same order
filled by n symbols so that in each line all symbols are different. Latin hypercubes can
be considered as the Cayley tables of d-ary quasigroups of order n, latin hypercubes of
dimension 2 are known as latin squares. A transversal in a latin hypercube of order n is a
collection of n entries hitting each hyperplane exactly once and containing all n different
symbols of the hypercube.

In this talk we focus on transversals in latin hypercubes corresponding to d-iterated
quasigroups whose studies were initiated in [2]. Given a binary quasigroup G with the
operation ∗, define the d-iterated quasigroup G[d] to be the (d+ 1)-ary quasigroup such
that

G[d](x1, . . . , xd+1) = x0 ⇔ (. . . ((x1 ∗ x2) ∗ x3) ∗ . . . ∗ xd) ∗ xd+1 = x0.

It is known that the Hall–Paige conjecture gives a condition when the Cayley table of a
group has a transversal. Here we show that if a group G satisfies the Hall–Paige condition,
then every d-iterated group G[d] has a transversal, otherwise G[d] has transversals only
if d is even. Moreover, if the number of transversals in G[d] is nonzero, then it is equal
to n!

|G′|nn−1 · n!d(1 + o(1)) as d → ∞, where G′ is the commutator subgroup of G. The

obtained asymptotic of the number of transversals is similar to one from [1] for Cayley
tables of groups of large order.

We present a method that allows us to prove analogous asymptotics for transversals in
any iterated quasigroup. Moreover, we can count not only transversals but other types
of diagonals and structures. For instance, we show that all iterated quasigroups of large
enough dimensions have many near transversals.

[1] S. Eberhard, F. Manners, R. Mrazović. An asymptotic for the Hall–Paige conjecture.
ArXiv:2003.01798.

[2] A. A. Taranenko. Transversals, plexes, and multiplexes in iterated quasigroups. Elec-
tron. J. Combin. 25(4), 2018, P. 4.30, 1–17.
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Alternating sign hypermatrices and Latin-like
squares

Cian O’Brien

National University of Ireland, Galway

(This talk is based on joint work with Rachel Quinlan.)

MSC2000: 05B15, 05B20

To any n×n Latin square L, we may associate a unique sequence of n mutually orthogonal
n× n permutation matrices P = P1, P2, ..., Pn such that

L = L(P ) =
∑

kPk.

Brualdi and Dahl [1] described a generalisation of a Latin square, called an alternat-
ing sign hypermatrix Latin-like square (ASHL), by replacing P with an alternating sign
hypermatrix (ASHM).

An ASHM is an n × n × n (0,1,-1)-hypermatrix in which the non-zero elements in each
row, column, and vertical line alternate in sign, beginning and ending with 1. Since every
sequence of n mutually orthogonal n × n permutation matrices forms the planes of a
unique n×n×n ASHM, this generalisation of Latin squares follows very naturally, with
an ASHM A having corresponding ASHL

L = L(A) =
∑

kAk,

where Ak is the kth plane of A.

This talk presents problems posed in [1], some of which I have addressed in [2], and some
of which are current work.

[1] R. Brualdi, G. Dahl. Alternating Sign Matrices and Hypermatrices, and a General-
ization of Latin Squares. Advances in Applied Mathematics, 95(10): 1016, 2018.

[2] C. O’Brien. Alternating Sign Hypermatrix Decompositions of Latin-like Squares. Ad-
vances in Applied Mathematics, 121, 2020.
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Omniversal Latin squares
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MSC2000: 05B15

A partial transversal of a Latin square is a set of entries in which no row, column or
symbol is repeated. It is maximal if it is not contained in a larger partial transversal. A
Latin square of order n is omniversal if it possesses a maximal partial transversal of every
size from dn

2
e to n. We show that omniversal Latin squares exist iff n 6≡ 2 mod 4 and

n /∈ {3, 4}. We also show that group tables are very far from omniversal (as are random
Latin squares). In the process we encounter an interesting problem in combinatorial group
theory.
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The analysis and recognition of fractal image patterns derived from Cayley tables have
recently turned out to play a relevant role for distributing distinct types of algebraic
and combinatorial structures into isomorphism classes. This talk delves into this topic
by focusing on the study of standard sets of image patterns associated to a given Latin
square [2] (see also [1, 3]). Based on the differential box-counting method, the mean fractal
dimension of these standard sets enables one to describe a new Latin square isomorphism
invariant, which enables one to characterize isomorphism classes of non-idempotent Latin
squares in an efficient computational way.

References

[1] V. Dimitrova, S. Markovski, Classification of quasigroups by image patterns. In: Pro-
ceedings of the Fifth International Conference for Informatics and Information Tech-
nology, Bitola, Macedonia, 2007; 152–160.

[2] R. M. Falcón, Recognition and analysis of image patterns based on Latin squares by
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(2019), 1769–1792.
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In this talk we will present distance-regular graphs admitting a transitive action of the
Mathieu groups. We also study codes spanned by the adjacency matrices of the con-
structed DRGs. From the code spanned by the adjacency matrix of the strongly regular
graph with parameters (176,70,18,34) we obtain new block designs having the full auto-
morphism groups isomorphic to the Higman-Sims finite simple group.
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Motivated by the Grid-Minor Theorem of Robertson and Seymour, a.k.a. the Excluded
Grid Theorem, we study the following problem on the relation between graph drawings
and grid minors:

Question 1. For any given planar graph H with a polyline drawing on a p× q grid, what
is the smallest area A = A(p, q) of a grid having H as minor?

Since a grid of area A is minor of a square grid of side O(
√
A), the Excluded Grid Theorem

implies that any planar graph G that excludes such a square grid, and thus excluding H,
has a treewidth at most O(

√
A). Since H is a planar graph with at most pq vertices, a

classical result in Graph Minor Theory implies that H is minor of a square grid of side
2pq−4, yielding the upper boundA(p, q) = O((pq)2). More recently, Dieng and Gavoille [1]
showed that A(p, q) = O(p2q), leaving open the question whether A(p, q) = O(pq) or not.
This upper bound would be optimal since clearly A(p, q) ≥ pq if H is a p× q grid.

In this study, we proved that finding the smallest area of a grid having H as minor is
NP-hard, and also that A(p, q) = O(pq) holds for several large classes of n-vertex planar
graphs with dense drawing, i.e., with drawing area O(n).

Figure 1: A dense drawing on a p× q grid for a planar graph with p = 5 and q = 4, and
minor drawing on a p× (3q − 2) grid of the same graph.

[1] Y. Dieng and C. Gavoille, On the treewidth of planar minor free graphs, in 4th EAI
Int’nl Conf. on Innov. and Interdisciplinary Sol. for Underserved Areas (InterSol), vol. 321
of LNICST series, Springer, Cham, Mar. 2020, pp. 238–250.
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The Farey graph, shown above and surveyed in [1, 2], plays a role in a number of math-
ematical fields ranging from group theory and number theory to geometry and dynam-
ics [1]. Curiously, graph theory is not among these. We will see that the Farey graph
plays a central role in graph theory too: it is one of two infinitely edge-connected graphs
that must occur as a minor in every infinitely edge-connected graph. Previously it was
not known that there was any set of graphs determining infinite edge-connectivity by
forming a minor-minimal list in this way, let alone a finite set.

[1] M. Clay and D. Margalit. Office Hours with a Geometric Group Theorist, Princeton
University Press, 2017.

[2] A. Hatcher. Topology of numbers, Book in preparation, 2017. Available online.

[3] Jan Kurkofka. Every infinitely edge-connected graph contains the Farey graph or Tℵ0∗t
as a minor, 2020. Available at arXiv:2004.06710.

[4] Jan Kurkofka. The Farey graph is uniquely determined by its connectivity, 2020.
Positively evaluated by Journal of Combinatorial Theory, Series B. Available at
arXiv:2006.12472.

[5] Jan Kurkofka. Ubiquity and the Farey graph, European Journal of Combinatorics 95
(2021) 103326. Available at arXiv:1912.02147.

87



Wednesday 11:45, Zoom 4

Covers of complete graphs and related
association schemes

Ludmila Tsiovkina

Krasovsky Institute of Mathematics and Mechanics

MSC2000: 05E18, 05E30

A distance-regular antipodal cover of the complete graph Kn is equivalently defined as
a connected graph, whose vertex set admits a partition into n cells (called antipodal
classes) of the same size r ≥ 2 such that each cell induces an r-coclique, the union of any
two distinct cells induces a perfect matching, and any two non-adjacent vertices that lie
in distinct cells have exactly µ ≥ 1 common neighbours.

Distance-regular antipodal covers of complete graphs form a vast class of graphs that is
closely related to many important algebraic or combinatorial objects such as generalised
Hadamard matrices, projective planes, generalised quadrangles, divisible designs, and
codes. Despite the fact that the complete their classification seems unreachable, one
may hope to obtain new their constructions and a partial classification under additional
constraints of group nature, such as vertex-transitivity. Since every vertex-transitive cover
can be constructed as a union of some graphs of basis relations of a schurian association
scheme, the following problem naturally arises: describe schurian association schemes,
for which a union of some graphs of basis relations is a distance-regular antipodal cover
of a complete graph.

In this talk, we investigate schurian association schemes Inv(G) of a permutation group G,
for which the (underlying) graph Γ of a basis relation is a distance-regular antipodal cover
of a complete graph. The group G can be regarded as an edge-transitive automorphism
group of Γ and induces a 2-homogeneous permutation group GΣ on the set Σ of its
antipodal classes, which is either almost simple, or affine. We will present some recent
results on classification of such schemes and covers in the almost simple case for GΣ.
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Let F,G and H be simple graphs. The notation F → (G,H) means that for any red-blue
coloring on the edges of graph F , there exists either a red copy of G or a blue copy of H.
A graph F is called a Ramsey (G,H)-minimal graph if it satisfies two condiditions: (i)
F → (G,H) and (ii) F −e9 (G,H) for any edge e of F . The class of all Ramsey (G,H)-
minimal graphs is denoted byR(G,H). The pair (G,H) is called Ramsey-finite ifR(G,H)
is finite, otherwise it is called Ramsey-infinite. The study of Ramsey minimal graphs was
introduced by Burr et al. [1]. In general, finding the Ramsey (G,H)-minimal graphs is
an interesting problem but also a difficult one. Burr et al. [2] proved that (G,K1,n) is
Ramsey-infinite if G is any 2-connected graph. Borowiecki et al. [3] characterized all
graphs in R(K3, K1,2). Vetŕık et al. [4] gave an infinite family of Ramsey (C4, K1,2)-
minimal graphs of any diameter k ≥ 4. In this talk, we present an infinite family of
Ramsey (G,H)-minimal graphs where G ∼= C4 and H ∼= K1,n for any n ≥ 3.

Keywords: Ramsey minimal graph, cycle, star.

[1] S.A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976),
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89



Wednesday 10:55, Zoom 5

On the size-Ramsey number of grid graphs

Meysam Miralaei

Institute for Research in Fundamental Sciences (IPM)

(This talk is based on joint work with Dennis Clemens, Damian Reding, Mathias
Schacht and Anusch Taraz..)

MSC2000: 05C55, 05D10

Abstract

For two graphs F and G, we say that G is Ramsey for F and write G −→ F ,
if every 2-coloring of the edges of G yields a monochromatic copy of F . Erdős,
Faudree, Rousseau, and Schelp defined the size-Ramsey number r̂(F ) of F to be
the smallest integer m such that there exists a graph G with m edges that is Ramsey
for F , i.e.,

r̂(F ) = min{e(G) : G −→ F} .
Size-Ramsey numbers of graphs have been studied for almost 50 years with partic-
ular focus on the case of trees and bounded degree graphs (sparse graphs).

Addressing a question posed by Conlon and Nenadov we focus on 2-dimensional
grids. The s × t grid graph Gs,t is defined on the vertex set [s] × [t] with edges uv
present, whenever u and v differ in exactly one coordinate by exactly one. We prove
that the size-Ramsey number of the grid graph on

√
n × √n vertices is bounded

from above by n3/2+o(1).
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The multipartite-size Ramsey number and the multipartite-set Ramsey number are vari-
ations of the classical Ramsey number. These two types of Ramsey numbers for complete
multipartite graphs were introduced by Burger et al. (2004a and 2004b) and generalized
by Syafrizal et al. (2005).

For j, s ≥ 1, let Kj×s denote a complete multipartite graph having j classes with s
vertices in each class. For simple graphs G1, ..., Gk, the multipartite-set Ramsey number
Ms(G1, ..., Gk) is defined as the smallest positive integer j such that any k-coloring of
the edges of Kj×s contains a monochromatic copy of Gi for some i, 1 ≤ i ≤ k. Similarly,
the multipartite-size Ramsey number mj(G1, ..., Gk) is defined as the smallest positive
integer t such that any k-coloring of the edges of Kj×t contains a monochromatic copy of
Gi for some i, 1 ≤ i ≤ k. In 2019, Perondi and Carmelo proved that the multipartite-set
Ramsey number Mm(K2,m(n−1)+1, K2,m(n−1)+1) = 4n − 1 if there are a strongly regular
graph with parameter (4n − 2, 2n − 2, n − 2, n − 1) and a symmetric Hadamard matrix
of order m with m ≥ 4n.

In this talk, utilising the results of Perondi and Carmelo, we present the exact value of
the multipartite-size Ramsey number m4n−3(K2,j(n−1)+1, K2,j(n−1)+1).

Keywords: multipartite-size Ramsey number, multipartite-set Ramsey number, bipartite
graph
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A graphG is q-Ramsey for a q-tuple of graphs (H1, . . . , Hq), denoted byG→q (H1, . . . , Hq),
if every q-colouring c : E(G)→ [q] contains a monochromatic copy of Hi in colour i, for
some i ∈ [q]. The graph G is called q-Ramsey-minimal for (H1, . . . , Hq) if it is q-Ramsey
for (H1, . . . , Hq) but no proper subgraph of G possesses this property. Let sq(H1, . . . , Hq)
denote the smallest minimum degree of G over all graphs G that are q-Ramsey-minimal
for (H1, . . . , Hq).

The study of the parameter s2 was initiated by Burr, Erdős and Lovász [1] in 1976 when
they showed that for cliques, s2(Kk, Kt) = (k − 1)(t − 1). In the past two decades the
parameter sq has been studied extensively, focusing on its symmetric version with Hi = H
for all i (H being a clique, a cycle, certain bipartite graph or from some sporadic classes
of graphs). We present three new results in the asymmetric setting, two exact results with
2 colours for the parameters s2(Kk, C`) and s2(Ck, C`) (where C` is a cycle of length `),
and find various upper bounds on sq(Kk, . . . , Kk, C`, . . . , C`), depending on the range of
parameters.

[1] S. A. Burr, P. Erdős, and L. Lovász. On graphs of ramsey type. Ars Combin., 1:167-
190, 1976.
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Many problems in extremal set theory have analogues in terms of permutations, we
consider such a problem regarding shattering. We view a permutation as an ordering
of the elements in [n]. A family of permutations F ⊆ Sn is said to shatter a triple
{x, y, z} ⊆ [n] if there exist six permutations in F where the elements x, y, z can be seen
in a different order in each of the chosen permutations. We consider families that shatter
all possible triples from [n] and ask how small these families can be. For instance when
n = 4 we have the following family of permutations shattering every triple

{1234, 2413, 3412, 1432, 4231, 3214}.

This definition of shattering can be extended from triples to k-tuples, where all k! order-
ings of the k-tuple must appear in permutations from F .

The question we explore is to find the size of the smallest family of permutations of [n]
that shatters every triple and the k-tuple extension of this. Clearly the above example is
as small as possible when n = 4, there are 6 different orderings of any given triple and
each permutation contains exactly one ordering, meaning we need at least 6 permutations
to shatter any triple. We show that, when n is large, families that shatter every k-tuple
have size O(log n) for all k ≥ 3 and give constructions of shattering families with this
size. We also explore a partial variant of shattering in which every k-tuple must have at
least t out of the total k! orders appearing in the permutations of F .
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An exact characterization of saturation for
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A 0-1 matrix M contains a 0-1 matrix pattern P if we can obtain P from M by deleting
rows and/or columns and turning arbitrary 1-entries into 0s. The saturation function
sat(P, n) for a 0-1 matrix pattern P indicates the minimum number of 1s in an n × n
0-1 matrix that does not contain P , but changing any 0-entry into a 1-entry creates an
occurrence of P .

Saturation for 0-1 matrices was introduced by Brualdi and Cao [1]. Fulek and Keszegh
[2] started a systematic study, and showed that each pattern has a saturation function
either in O(1) or in Θ(n). They exhibited large classes of patterns with linear saturation
function, in particular the decomposable patterns, i.e., 0-1 matrices of the form ( A 0

0 B ) or
( 0 A
B 0 ).

Subsequently, Geneson [3] showed that almost all permutation matrices have bounded
saturation functions. We complete the classification of permutation matrices by showing
that each indecomposable permutation matrix has bounded saturation function. This
involves constructions based on oscillations in indecomposable permutations.

[1] Richard A. Brualdi and Lei Cao. Pattern-avoiding (0,1)-matrices. arXiv e-prints, 2020.

[2] Radoslav Fulek and Balázs Keszegh. Saturation problems about forbidden 0-1 submatrices. arXiv
e-prints, 2020.

[3] Jesse Geneson. Almost all permutation matrices have bounded saturation functions. The Electronic
Journal of Combinatorics, 28(2):P2.16, 2021.
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Generalising previous work, the notion of monotone griddability of a permutation class
was introduced in [3] as an enumerative tool. Later, a stronger notion of geometric grid-
dability was developed [1]. While more restrictive, this stronger condition guarantees very
desirable enumerative properties of the class, as well as well-quasi-orderability under the
subpattern relation. The requirements for monotone griddability are very well understood,
with a concise and transparent characterisation of monotone griddable classes in terms of
minimal obstructions [3]. The boundary between monotone and geometric griddability,
however, is a different story. In [2], we uncovered a conceptual similarity between geo-
metric griddability of a permutation class and boundedness of a certain graph parameter
in the corresponding class of permutation graphs. This parameter, called lettericity, was
introduced in [4].

In this talk, we start by sketching a proof of a conjecture from [2]: a class X is geo-
metrically griddable if and only if the corresponding class GX of permutation graphs has
bounded lettericity. As a consequence, understanding the boundary between monotone
and geometric griddability is the same as understanding the behaviour of lettericity in the
class of permutation graphs. We then briefly discuss our current progress in this direction.
Finally, we remark that the study of lettericity in the universe of all graphs reveals an
intriguing hierarchy of structure – we propose some open problems on this topic.

[1] M.H. Albert, M.D. Atkinson, M. Bouvel, N. Ruškuc, V. Vatter, Geometric grid classes
of permutations, Trans. Amer. Math. Soc. 365 (2013), 5859–5881.

[2] B. Alecu, V. Lozin, D. de Werra, V. Zamaraev, Letter graphs and geometric grid
classes of permutations: characterization and recognition, Discrete Applied Mathe-
matics 283 (2020), 482–494.

[3] S. Huczynska, V. Vatter, Grid classes and the Fibonacci dichotomy for restricted
permutations. Electron. J. Combin. 13 (2006), R54, 14 pp.

[4] M. Petkovšek, Letter graphs and well-quasi-order by induced subgraphs, Discrete
Mathematics, 244 (2002) 375–388.
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The notion of a mesh pattern, generalizing several classes of permutation patterns, was
introduced in 2011 by Brändén and Claesson to provide explicit expansions for certain
permutation statistics as, possibly infinite, linear combinations of (classical) permutation
patterns. There is a long line of research papers dedicated to the study of mesh patterns
and their generalizations.

In this talk, I will discuss a systematic study of avoidance and distribution of mesh
patterns of short length, and some general results on distributions of several infinite
families of mesh patterns.
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An automaton consists of a finite set of states and a collection of functions from the set
of states to itself. An automaton is synchronizing if there is a word (that is, a sequence
of functions) that maps all states onto the same state. Černý’s conjecture on the length
of the shortest such word is one of the most famous open problem in automata theory.
We consider the closely related question of determining the minimum length of a word
that maps some k states onto a single state.

For synchronizing automata, we have improved the upper bound on the minimum length
of a word that sends some triple to a a single state from 0.5n2 to ≈ 0.19n2. I will discuss
this result and some related results, including a generalisation of this approach leading
to an improved bound on the length of a synchronizing word for 4 states and 5 states.
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The two-circulant core (TCC) construction for Hadamard matrices (HMs) uses two se-
quences with almost perfect autorrelation to construct a HM. A research problem of K.
Horadam asks whether such matrices are cocyclic. Using ideas from permutation groups,
we prove that the order of a cocyclic TCC HM coincides with the order of a HM of Paley
type, Sylvester type or certain multiples of these orders. In addition, we show that there
exit cocyclic TCC HMs at all allowable order less or equal to 1000 with at most one
exception.
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A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring
of the complete graph is asymptotically minimised by the random colouring. The classifi-
cation of common graphs is one of the most intriguing problems in extremal graph theory.
In this talk we will consider this notion in a local setting as considered by Csóka, Hubai
and Lovász where the graph is required to be the minimiser with respect to perturbations
of the random 2-edge-colouring, and give a complete characterisation of graphs H into
three categories, in regard to a possible behaviour of the 12 initial terms in the Taylor
series determining the number of monochromatic copies of H in such perturbations:

• graphs of Class I are locally common,

• graphs of Class II are not locally common, and

• graphs of Class III cannot be determined to be locally common or not based on the
initial 12 terms.

As a corollary, we obtain new necessary conditions on a graph to be common and new
sufficient conditions on a graph to be not common.

99



Wednesday 13:35, Zoom 2

The Sunflower Problem

Suchakree Chueluecha

Lehigh University

(This talk is based on joint work with Tolson Bell and Lutz Warnke.)

MSC2000: 05D05, 05D40

A sunflower with p petals consists of p sets whose pairwise intersections are identical. The
goal of the sunflower problem is to find the smallest r = r(p, k) such that every family of
at least rk k-element sets must contain a sunflower with p petals. Major breakthroughs
by Alweiss-Lovett-Wu-Zhang and others show that r = O(p log(pk)) suffices. In this talk,
we present our improvement to r = O(p log(k)).

Joint work with Tolson Bell and Lutz Warnke, see https://arxiv.org/abs/2009.09327
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An interesting question in the spectral graph theory is about the structure of the eigen-
vectors of matrices associated with graphs. A graph is weakly Hadamard diagonalizable
(WHD) if its Laplacian matrix L can be diagonalized with a weakly Hadamard matrix
[1]. In other words, if L = PDP−1, where D is a diagonal matrix and P has the property
that all entries in P are from {0,−1, 1} and that P tP is a tridiagonal matrix. In this
talk, I will present some necessary and sufficient conditions for a graph to be WHD. Also
some families of graphs which are WHD, will be presented.

[1] M. Adm, K. Almuhtaseb, S. Fallat, K. Meagher, S. Nasserasr, M.N. Shirazi and A.S.
Razafimahatratra. Weakly Hadamard diagonalizable graphs. Linear Algebra and its
Applications, 610, 86-119, 2021.
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In 2005, Exoo posed the following question. Fix ε with 0 ≤ ε < 1. Let Gε be the graph
whose vertex set is the Euclidean plane, where two vertices are adjacent iff the Euclidean
distance between them lies in the closed interval [1 − ε, 1 + ε]. What is the chromatic
number χ(Gε) of this graph? The case ε = 0 is precisely the classical “chromatic number
of the plane” problem. In a 2018 preprint, de Grey shows that χ(G0) ≥ 5; the proof relies
heavily on machine computation. In 2016, Grytczuk et al. proved a weaker result with
a human-comprehensible but nonconstructive proof: whenever 0 < ε < 1, we have that
χ(Gε) ≥ 5. (This lower bound of 5 was later improved by Currie and Eggleton to 6.)
The De Bruijn - Erdős theorem (which relies on the axiom of choice) then guarantees the
existence, for each ε, of a finite subgraph Hε of Gε such that χ(Hε) ≥ 5. In this paper,
we explicitly construct such finite graphs Hε. We find that the number of vertices needed
to create such a graph is no more than 2π(15 + 14ε−1)2. Our proof can be done by hand
without the aid of a computer.

102



Wednesday 13:10, Zoom 4

Spined Categories: generalising tree-width
beyond graphs

Benjamin Merlin Bumpus

University of Glasgow

(This talk is based on joint work with Zoltan Kocsis.)

MSC2000: 05C75, 18B99, 05C85

Problems that are NP-hard in general are often tractable on inputs that have a recur-
sive structure. For instance consider classes defined in terms of ‘graph decompositions’
such as of bounded tree- or clique-width graphs. Given the algorithmic success of graph
decompositions, it is natural to seek analogues of these notions in other settings. What
should a ‘tree-width-k’ digraph or lattice or temporal graph even look like?

Since most notions of decomposition are defined in terms of the internal structure of
the decomposed object, generalizing such decompositions to a larger class of objects
tends to be an arduous task. In this talk I will show how this difficulty can be reduced
significantly by finding a characteristic property formulated purely in terms of the category
that the decomposed objects inhabit, which defines the decomposition independently of
the internal structure.

I will introduce an abstract characterisation of tree-width by defining our new notions of
spined categories and S-functors. Our results can be thought as a vast generalisation of
Halin’s definition of tree-width as the maximal graph parameter sharing certain properties
with the Hadwiger number and chromatic number. Spined categories provide a roadmap
to the discovery of new tree-width-like parameters: they can be seen as a black box taking
as input some category satisfying two axioms and yielding an appropriate tree-width
analogue as output.
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Sharp Thresholds in Random Temporal Graphs

Viktor Zamaraev

Department Of Computer Science, University of Liverpool

(This talk is based on joint work with Arnaud Casteigts, Michael Raskin, and Malte
Renken.)

MSC2000: 05C80

A graph whose edges only appear at certain points in time is called a temporal graph
(among other names). Such a graph is temporally connected if each ordered pair of vertices
is connected by a path which traverses edges in chronological order (i.e., a temporal
path). In this paper, we consider a simple model of random temporal graph, obtained by
permuting the edges of an Erdős–Rényi random graph Gn,p uniformly at random.

We show that this model exhibits a surprisingly regular sequence of thresholds related to
temporal reachability. In particular, we show that at p = log n/n any fixed pair of vertices
can a.a.s. reach each other, at 2 log n/n at least one vertex (and in fact, any fixed node)
can a.a.s. reach all others, and at 3 log n/n all the vertices can a.a.s. reach each other
(i.e., the graph is temporally connected). All these thresholds are sharp. In addition, we
show that at p = 4 log n/n the graph contains a spanning subgraph of minimum possible
size that preserves temporal connectivity, i.e., it admits a temporal spanner with 2n− 4
edges.
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Maximal Matroids in Weak Order Posets

Bill Jackson

Queen Mary University of London

(This talk is based on joint work with Katie Clinch and Shin-Ichi Tanigawa.)

MSC2000: Primary 05B35; Secondary 05C35

Let X be a family of subsets of a finite set E. A matroid M on E is said to be an X -
matroid if each set in X is a circuit in M . We consider the problem of determining when
there exists a unique maximal X -matroid in the weak order poset of all X -matroids on
E (defined by putting M1 �M2 if every independent set in M1 is independent in M2).
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The critical group of orientable ribbon graphs

Criel Merino

UNAM

(This talk is based on joint work with Iain Moffatt and Steven D. Noble.)

MSC2000: 05C50,05C10

The critical group of a connected graph is now a well-stablished structure in Combina-
torics. It is usually defined using the reduced Laplacian of the graph. However, the critical
group is also isomorphic to the quotient Zm/(C⊕C∗), where m, C and C∗ are the number of
edges, cycle space and cocycle space, respectively, of the graph. We use that an orientable
ribbon graph is a even delta-matroid representable by a principal unimodular matrix to
associate an abelian group to any orientable ribbon graph. For planar graphs both groups
are isomorphic. As a byproduct we obtain a formula for the number of quasi-trees of an
orientable ribbon graph by computing a determinant.

106



Thursday 10:30, Zoom 1

An experimental approach to Gauss diagram
realizability

Alexei Lisitsa

University of Liverpool

(This talk is based on joint work with Abdullah Khan and Alexei Vernitski, University
of Essex.)

MSC2000: 05A99, 05C75, 57M25, 57M99

A chord diagram consists of a circle and some chords inside it. Chord diagrams are a
well-established tool in the study of topology of knots and of planar and spherical curves.
Not every chord diagram corresponds to a knot (or an immersed curve); if it does, it
is called realizable. A classical question of computational topology asked by Gauss is
which chords diagrams are realizable. Many variants of the criteria have been proposed
since then and it has turned out that realizability of diagrams can be expressed in terms
of circle graphs (chord interlacement graphs) associated with diagrams. The vertices of
the chord interlacement graph correspond to the chords of the diagram, and there is
an edge between vertices iff the corresponding chords intersect. In this talk we report
on the experimental investigation [3] of various Gauss diagram realizability descriptions
expressed in terms of their chord interlacement graphs. A novel efficient algorithm is used
for the generation of chord diagrams.

We discuss the number of chord diagrams (of a given size) satisfying various realizability
descriptions and corresponding chord interlacement graphs, and apply these numbers in
two ways. Firstly, some of these sequences of numbers are new, including [4], and expand
on known results. Secondly, we find counterexamples showing that recently published
Gauss diagram realizability descriptions in [1, 2] are incorrect.

[1] O. Biryukov, Parity conditions for realizability of Gauss diagrams, Journal
of Knot Theory and Its Ramifications, vol 28, No 01, pp 1950015, 2019

[2] A. Grinblat and V. Lopatkin, On Realizability Of Gauss Diagrams And
Constructions Of Meanders, Journal of Knot Theory and Its Ramifications,
vol 29, No 05, pp 2050031, 2020

[3] A. Khan and A. Lisitsa and A. Vernitski, Experimental Mathematics Ap-
proach to Gauss Diagrams Realizability, arXiv,2103.02102, 2021

[4] The On-Line Encyclopedia of Integer Sequences, A343358,
http://oeis.org/A343358
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Irreducibility and Tutte polynomials of graphs in
surfaces

Iain Moffatt

Royal Holloway, University of London

(This talk is based on joint work with A. Goodall, S.D. Noble, and L. Vena.)

MSC2000: 05C31

The Tutte polynomial is a polynomial-valued invariant of graphs, and is arguably the
most important and best studied graph polynomial. It’s important not only because it
encodes a large amount of combinatorial information about a graph, but also because
of its applications to areas such as statistical physics (as the Ising and Potts models)
and knot theory (as the Jones and homfly polynomials). Unsurprisingly, given its role
in combinatorics, the Tutte polynomial has been extended to many different settings for
many different purposes.

In this talk I’ll discuss extensions of the Tutte polynomial to graphs embedded in sur-
faces. After giving a brief overview of the various “topological Tutte polynomials” in the
literature, I’ll focus on the “ribbon graph polynomial”. This is a natural two-variable
Tutte polynomial for cellularly embedded graphs that is closely related to the “Bollobás–
Riordan polynomial”. In particular, I’ll characterise when the ribbon graph polynomial
is irreducible in terms of the connectivity of the embedded graph, a result that is joint
work with A. Goodall, S.D. Noble, and L. Vena.
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A Tutte Polynomial for Embedded Graphs

Maya Thompson

Royal Holloway, University of London

(This talk is based on joint work with Iain Moffatt.)

MSC2000: 05C31

The Tutte polynomial is one of the most important graph invariant polynomials. Part of
its relevancy comes from its ability to capture so much combinatorial information about
a graph. In recent years, several extensions of the Tutte polynomial to graphs cellularly
embedded in surfaces have appeared, one of the most recent of which being a polynomial
by Goodall, Litjens, Regts and Vena that captures information such as the number of
flows and tensions of a graph or the number of quasi-trees.

In this talk, I will show how extending to the family of decorated, (potentially) non-
cellularly embedded graphs in pseudo-surfaces facilitates a recursive formula for the
Goodall, Litjens, Regts and Vena polynomial. I hope to convey through my talk why
this is the natural family of embedded graphs to consider when talking about edge dele-
tion and contraction.
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The corona product of two graphs on n vertices
with the metric-location-domination number n/2

Zulfaneti

Institut Teknologi Bandung, Indonesia

(This talk is based on joint work with Hilda Assiyatun and Edy Tri Baskoro.)

MSC2000: 05C69

Let G = (V,E) be a simple connected graph. A set H ⊆ V is said to be a dominating
set of graph G if for every u ∈ V − H there exists a vertex h ∈ H so that d(u, h) = 1.
For an ordered subset X = {x1, x2, · · · , xp} of V and w ∈ V , the representation of vertex
w with respect to X is the p-vector (d(w, x1), d(w, x2), · · · , d(w, xp)), where d(w, x) is
the distance between vertices w and x in G. A set X is called a resolving set of G if
all vertices of G have distinct representations with respect to X. If a dominating set
H of a graph G is also a resolving set, then H is called a metric-locating-dominating
set (MLD-set) of G. The dominating number γ(G) (the metric dimension β(G) and the
metric-location-domination number γM(G), resp.) of a graph G is defined as the size of a
minimum dominating set (a resolving set and a MLD-set of G, resp.). The study on the
MLD-number of any graph was introduced by Brigham et al. (2003). They showed that
for any graph G, max{γ(G), β(G)} ≤ γM(G) ≤ min{γ(G) + β(G), n − 1}. The corona
product of two graphs G and H, denoted by G � H, is defined as the graph formed by
taking |V (G)| copies of graph H and connecting the i-th vertex of G to all vertices of the
i-th copy of H. In this talk, we consider the metric-location-domination number of the
corona product G�H. We characterize all graphs H with γM(G�H) = 1

2
|V (G�H)|.

Keywords : domination number, metric dimension, MLD-number, Corona product.
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Width parameters and graph classes: the case of
mim-width

Andrea Munaro

School of Mathematics and Physics, Queen’s University Belfast

(This talk is based on joint work with Flavia Bonomo-Braberman, Nick Brettell, Jake
Horsfield, Giacomo Paesani, and Daniël Paulusma.)

MSC2000: 05C85, 68Q25, 68R10

A large number of NP-hard graph problems become polynomial-time solvable on graph
classes where the mim-width is bounded and quickly computable. Hence, when solv-
ing such problems on special graph classes, it is helpful to know whether the graph
class under consideration has bounded mim-width. We extend the toolkit for proving
(un)boundedness of mim-width of graph classes and initiate a systematic study into
bounding mim-width from the perspective of hereditary graph classes. We present sum-
mary theorems of the current state of the art for the boundedness of mim-width for
(H1, H2)-free graphs and observe several interesting consequences. We also study the
mim-width of generalized convex graphs. This allows us to re-prove and strengthen a
large number of known results.

[1] Flavia Bonomo-Braberman, Nick Brettell, Andrea Munaro, and Daniël Paulusma.
Solving problems on generalized convex graphs via mim-width. WADS 2021, ac-
cepted.

[2] Nick Brettell, Jake Horsfield, Andrea Munaro, Giacomo Paesani, and Daniël
Paulusma. Bounding the mim-width of hereditary graph classes. Proc. IPEC 2020,
LIPIcs, 180:6:1–6:18, 2020.

[3] Nick Brettell, Jake Horsfield, Andrea Munaro, and Daniël Paulusma. List k-colouring
Pt-free graphs: a mim-width perspective. CoRR, abs/2008.01590, 2020.
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Uncountably many minimal hereditary classes of
graphs of unbounded clique-width

Dan Cocks

Department of Mathematics and Statistics, The Open University

(This talk is based on joint work with Robert Brignall.)

MSC2000: 05C85/05C75

Clique-width is a graph parameter which is important in algorithmic graph theory owing
to its use in understanding algorithmic tractability. A range of decision problems defined
on graphs that are in general NP-hard can be solved in polynomial time when the input
is restricted to graphs with bounded clique-width. In seeking to better understand graph
characteristics that result in bounded clique-width, much attention has recently been
directed to identifying minimal hereditary classes of graphs of unbounded clique-width.

In this talk, I will show that given an infinite word α over the alphabet {0, 1, 2, 3}, we can
define a class of bipartite hereditary graphs Gα, such that Gα has unbounded clique-width
unless α contains at most finitely many non-zero letters.

I will show that Gα is minimal of unbounded clique-width if and only if α belongs to
a precisely defined collection of words Γ. The set Γ includes all almost periodic words
containing at least one non-zero letter, which both enables us to exhibit uncountably
many pairwise distinct minimal classes of unbounded clique width, and also proves one
direction of a conjecture due to Collins, Foniok, Korpelainen, Lozin and Zamaraev. It
can then be demonstrated that the other direction of the conjecture is false, since Γ also
contains words that are not almost periodic.
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Feedback Vertex Set and Even Cycle Transversal
for H-Free Graphs: Finding Large Block Graphs

Giacomo Paesani

Department of Computer Science, Durham University, UK

(This talk is based on joint work with Daniël Paulusma and Paweł Rzążewski.)

MSC2000: 05C85

We prove new complexity results for Even Cycle Transversal and Feedback Ver-
tex Set on H-free graphs, that is, graphs that do not contain some fixed graph H as
an induced subgraph. In particular, we prove that both problems are polynomial-time
solvable for sP3-free graphs for every integer s ≥ 1. Our results show that both problems
exhibit the same behaviour on H-free graphs (subject to some open cases). This is in
part explained by a new general algorithm we design for finding in a graph G a largest
induced subgraph whose blocks belong to some finite class C of graphs. We also compare
our results with the state-of-the-art results for the Odd Cycle Transversal problem,
which is known to behave differently on H-free graphs.
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Tree-width dichotomy

Vadim Lozin

University of Warwick

(This talk is based on joint work with Igor Razgon.)

MSC2000: 05C75

We prove that the tree-width of graphs in a hereditary class defined by a finite set F of
forbidden induced subgraphs is bounded if and only if F includes a complete graph, a
complete bipartite graph, a tripod (a forest in which every connected component has at
most 3 leaves) and the line graph of a tripod.
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Coloring of Graphs Avoiding Bicolored Paths of
a Fixed Length

Alaittin Kırtışoğlu

Hacettepe University

(This talk is based on joint work with Lale Özkahya.)

MSC2000: 05

The problem of finding the minimum number of colors to color a graph properly without
containing any bicolored copy of a fixed family of subgraphs has been widely studied.
Most well-known examples are star coloring and acyclic coloring of graphs (Grünbaum,
1973) where bicolored copies of P4 and cycles are not allowed, respectively. We introduce a
variation of these problems and study proper coloring of graphs not containing a bicolored
path of a fixed length and provide general bounds for all graphs. A Pk-coloring of an
undirected graph G is a proper vertex coloring of G such that there is no bicolored copy
of Pk in G, and the minimum number of colors needed for a Pk-coloring of G is called
the Pk-chromatic number of G, denoted by sk(G). We provide bounds on sk(G) for all
graphs, in particular, proving that for any graph G with maximum degree d ≥ 2, and

k ≥ 4, sk(G) = 6
√

10d
k−1
k−2 . Moreover, we find the exact values for the Pk-chromatic

number of the products of some cycles and paths for k = 5, 6.
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F-Perfect Graphs

James Alex

Curtin University

(This talk is based on joint work with Louis Caccetta.)

MSC2000: 05C15, 05C17, 05C69

Perfect graphs and their associated conjectures which were introduced by Berge during
the early 1960s have significantly influenced the development of graph theory over the
last fifty years. Inspired by Berge’s perfect graphs, Ravindra introduced a new class of
graphs in 2011 called F -perfect graphs and defined them as follows: Let F be a class of
well-defined graph and F ∈ F . Let θF (G) denote the minimum cardinality of a partition
C of the vertex set of G such that each set Ci ∈ C induces an F in G. Let αF (G) denote
the maximum cardinality of a subset S ⊆ V (G) such that no two distinct vertices in S lie
in the same F . Obviously θF (G) ≥ αF (G) and a graph G is F -perfect if θF (H) = αF (H)
for every induced subgraph H of G. Similarly, we denote χF as the minimum number
of colors required to color the graph G such no two vertices in the same F receive the
same color and ωF as the number of vertices of a maximum F contained in the graph
G. Obviously, χF (G) ≥ ωF (G) and graphs for which the coloring behaves in a controlled
and structured way depending on the F are called χF -perfect. Simultaneously this class
is quite large and includes many important classes. If F is a complete graph, then F -
perfect graphs mean Berge’s perfect graphs. Thus F -Perfect graphs enrich the purview
of further research in perfect graph theory by generalizing it. If F is a star, then we have
star-perfect graphs and with respect to these graphs Ravindra’s conjecture that a graph
G is θF -perfect if and only if G is C3-free, C3n+1-free and C3n+2-free for n ≥ 1. This
conjecture was settled in affirmative by Alex and Caccetta. For a suitable F , studying
the F -perfectness is worthy of investigation.
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Some graphs of order n with dominating partition
dimension n− 3

Muhammad Ridwan

Institut Teknologi Bandung, Indonesia

(This talk is based on joint work with Hilda Assiyatun and Edy Tri Baskoro.)

MSC2000: 05C12

Let G be a connected graph of order n. Let Π = {S1, · · · , Sk} be a k-partition of V (G).
The representation of a vertex u ∈ V (G) with respect to Π, denoted by r(u|Π), is the vec-
tor (d(u, S1), d(u, S2), · · · , d(u, Sk)), where d(u, S) represents the distance between vertex
u and a set S in G. The partition Π is called a resolving partition of G if all vertices have
distinct representations with respect to Π. Additionally, if Π also satisfies the property
that for every vertex v of G, there exists Sj ∈ Π for some j such that d(v, Sj) = 1, then
Π is called a resolving dominating partition of G. The dominating partition dimension of
G is the minimum cardinality of a resolving dominating partition of G. In general, char-
acterizing all graphs of order n with certain dominating partition dimension k (where
k ≤ n) is a difficult problem. Only few cases are already solved, namely the characteri-
zation studies of such graphs for k = n − 2, n − 1, or n. In this talk, we shall focus on
studying the graphs G of order n ≥ 4 with the dominating partition dimension n−3. We
shall characterize all graphs of order n ≥ 4 with dominating partition dimension n − 3
and diameter two.

Keywords: resolving dominating, dominating partition dimension, partition dimension
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Directed Cordial Labeling of Some Graphs

Sarang Sadawarte

Department of Mathematics, Sharda University, Greater Noida

(This talk is based on joint work with Dr. Sweta Srivastav.)

MSC2000: 05C78

Abstract: A graph K is said to be directed, if each edge of K has an orientation. A binary
vertex labeling of K is directed cordial if it satisfies certain properties. A graph which
preserves directed cordiality is known as directed cordial graph. This study introduce
directed cordial labeling of double graph of directed path Pr and double graph of directed
cycle Cr. We also emphasized directed cordiality of these graphs, for r ≡ 0, 1, 2, 3(mod4).

Theorem 1. The double graph of directed path preserves directed cordial labeling.

Example 1 : The double graph of directed path P5 is directed cordial under certain
condition r ≡ 1(mod4) is elaborated by figure given below.

Theorem 2. The double graph of directed cycle preserves directed cordial labeling.

References

[1] Cahit, I., (1987). Cordial graphs : A Weaker version of graceful and harmonious
graphs. Ars combinatorica, 23, 201–207.

[2] Burton, D.M., (1990). Elementary Number Theory, Brown Publishers, Seventh Edi-
tion.

[3] Gallian, J.A., (2016). A Dynamic survey of graph labeling, The Electronics Journal
of Combinatorics, DS6.

[4] Harary, F., (1972). Graph Theory, Addison-Wesley, Reading, Massachusetts.

[5] Al-Shamiri, M.M.A., Nada, S.I., Elrokh, A.I. and Elmshtay, Y. (2020). Some Results
on Cordial Digraphs.Open Journal of Discrete Mathematics, 10, 4–12.
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On Stability Number and Chromatic Number of
Markovian Random Graphs

Akshay Gupte

School of Mathematics, University of Edinburgh

(This talk is based on joint work with Yiran Zhu.)

MSC2000: O5C80, O5C15, 60J10, 60G42

The stability number α(G) of a graph G = (V,E) is the maximum size of an independent
set in G. Although hard to approximate in polynomial time within factor |V |, for the
Erdös-Rényi random graph Gn,p, there have been numerous studies on bounding α(Gn,p)
asymptotically and more so about the chromatic number χ(Gn,p) and its concentration.
We consider a random graph model in which edges are not i.i.d. Bernoulli r.v. like in Gn,p,
but are generated with respect to a Markov process. In particular, given p ∈ (0, 1) and a
decay parameter δ ∈ (0, 1], the probability pij of an edge (i, j), for 1 ≤ i < j ≤ n, depends
on the presence of the edge (i − 1, j); if the latter edge does not exist then pij = pi−1,j,
otherwise pij = δ pi−1,j. Taking δ = 1 retrieves the Erdös-Rényi graph Gn,p.
Theorem 1. Let δ ∈ (0, 1). Denote σ = 1

1−δ and let γ = δ
λ(1−δ) for λ > 1. We have

w.h.p.1 that Ω(n
1

σ+1 ) = α(Gδn,p) ≤
(
1 + 2

3e
− e−γ

)
· n.

We prove this using nontrivial bounds on the total probabilities for each edge and on the
probability that a subset of vertices forms an independent set. For the asymptotic lower
bound, we analyse the size of the maximal independent set found by a greedy algorithm.
The Motzkin-Straus theorem, Hoffman’s lower bound on χ(G), and Theorem 1 imply
some spectral properties of adjacency matrix of Gδn,p.
Our second theorem shows that the average vertex degree in Gδn,p, denoted by dδn,p, scaled
by a constant factor of log n concentrates to 2.

Theorem 2. For ε > 0, we have w.h.p. that

∣∣∣∣
dδn,p
σ logn

− 2

∣∣∣∣ < ε.

We use the second moment method (Chebyshev’s inequality). Due to the absence of
independence structure between r.v.’s, we cannot apply the Chernoff/Hoeffding inequal-
ities, and use of martingale tail inequalities also does not help. For fixed p, this theorem
shows Gδn,p to be more sparse than Gn,p. Our result is consistent with the intuition that a
denser graph has smaller stability number because for dense Gn,p it is known that w.h.p.
α(Gn,p) ≈ 2 log 1

1−p
n for fixed p.

Since α(G) ≥ d |V |
χ(G)
e for any graph G, Theorem 1 implies a lower bound on χ(Gδn,p).

Vizing’s theorem and the analysis in Theorem 2 imply bounds on the edge chromatic
number χ′(Gn,p).

1Probability of the claim being true converges to 1 as n→∞ (also called asymptotically almost surely)
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Best Response Dynamics on Random Graphs

Calina Durbac

(This talk is based on joint work with Jordan Chellig, Nikolaos Fountoulakis.)

MSC2000: 05C99, 91A22

‘We consider evolutionary games on a population whose underlying topology of inter-
actions is determined by a binomial random graph G(n, p). Our focus is on 2-player
symmetric games with 2 strategies played between the incident members of such a popu-
lation. Players update their strategies synchronously. At each round, each player selects
the strategy that is the best response to the current set of strategies its neighbours play.
We show that such a system reduces to generalised majority and minority dynamics. We
show rapid convergence to unanimity for p in a range that depends on a certain character-
istic of the payoff matrix. In the presence of a bias among the pure Nash equilibria of the
game, we determine a sharp threshold on p above which the largest connected component
reaches unanimity with high probability. For p below this critical value, where this does
not happen, we identify those substructures inside the largest component that remain
discordant throughout the evolution of the system.’
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Component Counts of Random Injections

Dudley Stark

Queen Mary, University of London

MSC2000: 05C20, 05C30, 05C80

Similarly to the way that the digraph representing a permutation can be uniquely de-
composed into cycles, the digraph representing an injection between two finite sets can
be uniquely decomposed into cycles and paths. The component structure of a random
injection undergoes a phase transition between cycles dominating and paths dominating
as certain parameters change.
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Large complete minors in random subgraphs

Joshua Erde

Graz University of Technology

(This talk is based on joint work with Mihyun Kang and Michael Krivelevich.)

MSC2000: 05C80,05C83

Let G be a graph of minimum degree at least k and let Gp be the random subgraph of
G obtained by keeping each edge independently with probability p. We are interested in
the size of the largest complete minor that Gp contains when p = 1+ε

k
with ε > 0. We

show that with high probability Gp contains a complete minor of order Ω̃(
√
k), where the

∼ hides a polylogarithmic factor. Furthermore, in the case where the order of G is also
bounded above by a constant multiple of k, we show that this polylogarithmic term can
be removed, giving a tight bound.
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Maximizing the distance spectral radius of graphs

Aysel Erey

Gebze Technical University

MSC2000: 05C15, 05C50

The distance spectral radius of a graph is the largest eigenvalue of its distance matrix.
In this talk, I will discuss recent results and open questions on the problem of finding
extremal graphs with largest distance spectral radius within the family of connected
graphs with fixed chromatic number and order.
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Matchings in k-partite k-graphs

Candida Bowtell

University of Oxford

(This talk is based on joint work with Richard Mycroft.)

MSC2000: 05C65, 05C70, 05D15

Let H be a k-partite k-graph with parts V1, . . . , Vk each of size n, such that, for every
i ∈ [k], every (k − 1)-set in

∏
j∈[k]\{i} Vj lies in at least ai edges. Suppose further that

a1 ≥ . . . ≥ ak. Han, Zang and Zhao showed that for every ε > 0 and sufficiently large n,
with a1, a2 ≥ εn, H contains a matching of size at least min{n− 1,

∑
i∈[k] ai}, answering

and generalising a question of Rödl and Ruciński. Their arguments use complex absorbing
methods which fail when all of a2, . . . , ak are small. We consider the remaining cases and,
in particular, show that when

∑k
i=2 ai ≤

√
n

k+1
, H in fact contains a matching of size

at least min{n,∑i∈[k] ai}. Our proof uses a novel approach, making use of Aharoni and
Haxell’s ‘Hall’s Theorem for Hypergraphs’ and rainbow matchings.
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Turán problems for k-geodetic digraphs

James Tuite

Open University

(This talk is based on joint work with Grahame Erskine, Ervin Győri, Nika Salia and
Casey Tompkins.)

MSC2000: 05C35 05C20

A Turán-type problem asks for the largest possible size of a graph with given order n with
some family F of forbidden subgraphs. Such questions have been extensively investigated
for undirected graphs, but less so for directed graphs; some Turán problems for directed
graphs have been considered in [1,2,4].

A digraph G is k-geodetic if for any pair of (not necessarily distinct) vertices u, v of G
there is at most one walk in G from u to v of length ≤ k; this parameter has been studied
in a recent generalisation of the degree/girth problem to directed graphs [3]. Therefore it
is of interest to ask for the largest size of a k-geodetic digraph with order n.

In fact, this problem turns out to be relatively trivial, with extremal digraphs given by
orientations of complete bipartite graphs. The problem becomes much more interesting
when we add the condition of strong connectivity. Therefore in this talk we discuss the
following problem: what is the largest possible size of a strongly connected k-geodetic
digraph with order n? We solve this problem for k = 2 and classify the extremal digraphs.
For larger k we conjecture that the answer is of order n2

k2
. We present constructions that

achieve this bound and prove a strong upper bound. Finally we present some results on
generalised Turán problems for k-geodetic digraphs.

[1] Heydemann, M.C., On cycles and paths in digraphs, Discrete Math., 31 (2) (1980),
217-219.

[2] Huang, Z., Lyu, Z. and Qiao, P., A Turán problem on digraphs avoiding distinct walks
of a given length with the same endpoints. Discrete Math. 342 (6) (2019), 1703-1717.

[3] Miller, M., Miret, J.M. and Sillasen, A.A., On digraphs of excess one. Discrete Appl.
Math. (238) (2018), 161-166.

[4] Ustimenko, V.A. and Kozicki, J., On extremal directed graphs with large hooves. Topics
in Graph Theory, (2013), 26-35.
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Pósa-type results for Berge Hypergraphs

Nika Salia

Alfréd Rényi Institute of Mathematics

(This talk is based on joint work with Ervin Győri.)

MSC2000: 05C45, 05C65, 05C38

A Berge-path of length k in a hypergraph H is a sequence v1, h1, v2, h2, . . . , vk, hk, vk+1

of distinct vertices and hyperedges with vi+1 ∈ hi, hi+1 for all i ∈ [k]. Füredi, Kostochka,
and Luo recently gave Dirac-type minimum degree conditions that force non-uniform
Hypergraphs to have Hamiltonian cycles. We give Pósa-type lower bounds for degree
sequences for r-uniform and non-uniform Hypergraphs that force Hamiltonian cycles. We
also show that those bounds can not be strengthened.
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Permutation-Generated Maps on Dyck Paths

Yozef Tjandra

Calvin Institute of Technology, Jakarta, Indonesia

(This talk is based on joint work with Kevin Limanta and Hopein Christofen Tang.)

MSC2000: 05

In [1], Elizalde and Deutsch defined bijective maps between Dyck paths which are bene-
ficial in enumerating Dyck paths with certain statistics as well as pattern-avoiding per-
mutations. In this talk, we generalise the maps in such a way that they are generated
by any permutation in S2n. The generalised maps induce several ways to partition S2n

which lead to a new proof of an existing combinatorial identity involving double factorials
and other interesting results. As the generalisation relaxes several features of the map, in
certain condition, the maps are no longer bijective. We then provide a characterisation
of permutations which generate bijections. Moreover, we introduce a statistic that is the
number of unpaired steps among some consecutive circular steps of a Dyck path, whose
distribution is identical to other well-known height statistics of Dyck paths.

[1] Elizalde S. and Deutsch E. “A simple and unusual bijection for Dyck paths and its
consequences”. In: Annals of Combinatorics 7.3 (2003), pp. 281–297.

127



Thursday 10:55, Zoom 6

On the RIP of Paley ETF and related
combinatorial results

Shohei Satake

Kumamoto University, Japan

MSC2000: 94A08, 05C20, 05C69

Matrices with the restricted isometry property (RIP) play an important role in compressed
sensing. In particular, constructing deterministic RIP matrices breaking the square-root
bottleneck on the RIP is a challenging problem. In [1], Bandeira, Fickus, Mixon and Wong
considered the RIP of a matrix, called Paley ETF, defined by quadratic residues of the
p-element field where p is an odd prime, and they conjectured that Paley ETF could
break the square-root bottleneck. Later Bandeira, Mixon and Moreira ([2]) proved that
this conjecture is true when p ≡ 1 (mod 4) and a predicted character sum estimation
holds. Also it was proved in [2] that if Paley ETF breaks the square-root bottleneck,
then a significantly improved upper bound on the clique number of Paley graph can be
obtained.

In this talk, we consider the case of general odd primes p. We first prove that Paley ETF
breaks the square-root bottleneck assuming that a widely-believed conjecture, namely, the
Paley graph conjecture, holds. Moreover we show that if Paley ETF breaks the square-root
bottleneck, then we have significantly improved upper bounds on the maximum size of
transitive subtournaments in Paley tournament as well as on the clique number of Paley
graph. Finally, we discuss an application of our results to Paley graph extractor as well.

[1] A. S. Bandeira, M. Fickus, D. G. Mixon, P. Wong, The road to deterministic matrices
with the restricted isometry property, J. Fourier Anal. Appl. 19 (2013), 1123–1149.

[2] A. S. Bandeira, D. G. Mixon, J. Moreira, A conditional construction of restricted
isometries, Int. Math. Res. Not. 2017 (2017), 372–381.

[3] S. Satake, On the restricted isometry property of the Paley matrix, arXiv:2011.02907.
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The maximal number of 3-term arithmetic
progressions in finite sets in different geometries

Shoni Gilboa

The Open University of Israel

(This talk is based on joint work with Itai Benjamini.)

MSC2000: 05D99, 51F99

Let M be a metric space. We say that (a, b, c) ∈ M3 is a 3-term arithmetic progression
in M if dM(a, b) = dM(b, c) = 1

2
dM(a, c), where dM is the metric of M . For every positive

integer n, let µn(M) be the maximal number of 3-term arithmetic progressions in n-
element subsets of M .

In 2008, Green and Sisask showed that µn(Z) = dn2/2e for every n; the same argument
shows that µn(R) = dn2/2e for every n; this yields, by a simple projection argument, that
the same is true for Euclidean spaces of any dimension.

We show that this extends to a rather large class of metric spaces, including the hyper-
bolic spaces, and more generally, any Cartan–Hadamard manifold, i.e., complete simply
connected Riemannian manifold that has everywhere nonpositive sectional curvature.

On the other hand, we show that the result of Green and Sisask does not extend to some
other natural metric spaces. Starting with spherical geometry, we show that for every
n 6= 2,

µn(S1) =
1

2
n2 +





n n mod 4 = 0,
1
2
n n mod 4 = 1,

2 n mod 4 = 2,
1
2
n− 1 n mod 4 = 3;

in particular, µn(S1) > dn2/2e for every n ≥ 4; we further show that µn(S2) > µn(S1) for
every n ≥ 5. For the r-regular tree Tr, with respect to the graph metric, we show that

lim sup
n→∞

µn(Tr)

n2
≥ 1

2
+

(r − 2)2

2r2
,

and for the `-dimensional lattice graph Z` (where two vertices are adjacent if the Eu-
clidean distance between them is 1), again with respect to the graph metric, we show

that µn

(
Z`
)

= Ω
(
n3− 1

`

)
. Finally, we show that the maximum of µn over all metric

spaces is 1
4
n3 − 1

2
n2 + Θ(n).

A preprint, containing all the proofs and additional details, is available at
arXiv:2011.04410.
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Prevalence of Braess’ Paradox?

Vadim Zverovich

University of the West of England, Bristol

MSC2000: 05C90, 05D40

The well-known Braess’ paradox illustrates situations when adding a new link to a trans-
port network might not reduce congestion in the network but instead increase it. This is
due to individual entities acting selfishly/separately when making their travel plan choices
and hence forcing the system as a whole not to operate optimally. Deeper insight into
this paradox from the viewpoint of the structure and characteristics of networks may help
transport planners to avoid the occurrence of Braess-like situations in real-life networks.

A generally accepted belief is that Braess’ paradox is widespread. This was confirmed by
some researchers who claimed that the likelihood of the paradox is 50%, or even higher
under some assumptions. In this talk, we will discuss our recent results devoted to the
probability of Braess’ paradox to occur in the classical network configuration introduced
by Braess.

V. Zverovich, Modern Applications of Graph Theory, 2021, Oxford, UK: Oxford University
Press, 416 pages.
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Ramsey simplicity of random graphs

Dennis Clemens

Hamburg University of Technology

(This talk is based on joint work with Simona Boyadzhiyska, Shagnik Das and Pranshu
Gupta.)

MSC2000: 05D10, 05C80

The classic Ramsey problem asks for the minimum number of vertices in a graph G that
is q-Ramsey for H; that is, such that any q-edge-colouring of G leads to a monochromatic
copy of H. This central line of research was then broadened in the seminal work of Burr,
Erdős and Lovász to include the investigation of other extremal parameters of Ramsey
graphs, including the minimum degree of minimal Ramsey graphs.

By a simple application of the pigeonhole principle it follows that if G is a minimal
q-Ramsey graph for H, we must have δ(G) ≥ q(δ(H) − 1) + 1, and we call a graph
H q-Ramsey simple if this bound can be attained. Grinshpun showed that the random
graph G(n, p) is almost surely 2-Ramsey simple in the range logn

n
� p� n−2/3. We shall

explore this question further, asking for which pairs p and q we can expect G(n, p) to
be q-Ramsey simple, and we will in particular uncover some interesting behaviour in the
range n−2/3 � p� n−1/2.
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Towards the 0-statement of the
Kohayakawa-Kreuter Conjecture

Joseph Hyde

University of Birmingham

MSC2000: 05C55, 05C80

We study asymmetric Ramsey properties in Gn,p. Specifically, for fixed graphs H1, . . . , Hr,
we study the asymptotic threshold function for the property Gn,p → (H1, . . . , Hr) which
denotes that given any colouring of the edges of Gn,p with colours from the set [r] :=
{1, . . . , r} there exists i ∈ [r] and a copy of Hi in Gn,p where every edge has been
given colour i. Rödl and Ruciński determined the threshold function for the general
symmetric case; that is, when H1 = · · · = Hr. Kohayakawa and Kreuter conjectured the
threshold function for the asymmetric case. Recently, the 1-statement of this conjecture
was confirmed by Mousset, Nenadov and Samotij.

Building on work of Marciniszyn, Skokan, Spöhel and Steger, we reduce the 0-statement of
Kohayakawa and Kreuter’s conjecture to a more approachable, deterministic conjecture.
To demonstrate the potential of this approach, we show our conjecture holds for almost
all pairs of regular graphs. This therefore resolves the 0-statement for all such pairs of
graphs.
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minimal ramsey graphs with many vertices of
small degree

Pranshu Gupta

Hamburg University of Technology

(This talk is based on joint work with Simona Boyadzhiyska and Dennis Clemens.)

MSC2000: 05D10

Given any graph H, a graph G is said to be q-Ramsey for H if every colouring of the edges
of G with q colours yields a monochromatic subgraph isomorphic to H. Further, such a
graph G is said to be minimal q-Ramsey for H if additionally, no proper subgraph G′ of G
is q-Ramsey for H. In 1976, Burr, Erdős, and Lovász initiated the study of the parameter
sq(H), defined as the smallest minimum degree among all minimal q-Ramsey graphs for
H. In this talk, we consider the problem of determining how many vertices of degree
sq(H) a minimal q-Ramsey graph for H can contain. Specifically, we seek to identify
graphs for which a minimal q-Ramsey graph can contain arbitrarily many such vertices.
We call a graph satisfying this property sq-abundant. Among other results, we prove that
every cycle of length at least 4 is sq-abundant for any integer q ≥ 2. We also discuss
the cases when H is a clique or a clique with a pendant edge, extending previous results
of Burr et al. and Fox et al., respectively. To prove our results and construct suitable
minimal Ramsey graphs, we develop certain gadget graphs, called pattern gadgets, which
generalize and extend earlier constructions that have been proven useful in the study of
minimal Ramsey graphs.
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On the Ramsey numbers for the tree graphs
versus certain generalised wheel graphs

Zhi Yee Chng

UNSW Sydney

(This talk is based on joint work with Ta Sheng Tan and Kok Bin Wong.)

MSC2000: 05C55, 05D10

Given two simple graphs G and H, the Ramsey number R(G,H) is the smallest integer
n such that for any graph of order n, either it contains G or its complement contains H.
Let Tn be a tree graph of order n and Ws,m be the generalised wheel graph Ks + Cm. In
this research, we show that for n ≥ 5, s ≥ 2, R(Tn,Ws,6) = (s + 1)(n − 1) + 1 and for
n ≥ 5, s ≥ 1, R(Tn,Ws,7) = (s+ 2)(n− 1) + 1.

[1] J. A. Bondy, Pancyclic graphs, Journal of Combinatorics, Ser. B 11 (1971), 80–84.

[2] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of stars versus wheels,
European Journal of Combinatorics 25 (2004), 1067–1075.

[3] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of paths versus wheels,
Discrete Mathematics 290 (2005), 85–87.

[4] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of trees versus W6 or W7,
European Journal of Combinatorics 27 (2006), 558–564.

[5] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers R(Tn,W6) for ∆(Tn) ≥ n−3,
Applied Mathematics Letters 17 (2004), 281–285.

[6] Q. Lin, Y. Li and L. Dong, Ramsey goodness and generalized stars, European Journal
of Combinatorics 31 (2010), 1228–1234.

[7] L. Wang and Y. Chen, The Ramsey numbers of trees versus generalized wheels,
Graphs and Combinatorics 35 (2019), 189–193.

[8] Y. Zhang, On Ramsey numbers of short paths versus large wheels, Ars Combinato-
ria 89 (2008), 11–20.
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Perfect Colorings of Generalized Petersen
Graphs

Hamed Karami

Iran University of Science and Technology

MSC2000: 05C15

For a graph G and an integer m, a mapping T : V (G) → {1, ...,m} is called a perfect m-
coloring with matrix A = (aij), i, j ∈ {1, ...,m}, if it is surjective, and for all i, j, for every
vertex of color i, the number of its neighbors of color j is equal to aij. There is another
term for this concept in literature as ”equitable partition”. In this talk, we present some
important results about enumerating parameter matrices of all perfect 2-colorings and
perfect 3-colorings of generalized Petersen graphs GP (n, k) (see [1, 2, 3]).

[1] Alaeiyan Mehdi, Karami Hamed, Perfect 2-colorings of generalized Petersen graphs,
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 126, No. 3, August 2016, pp. 289–294.

[2] Alaeiyan Mehdi, Karami Hamed, Siasat Sajjad, Perfect 3-colorings of GP(5,2),
GP(6,2), and GP(7,2), JOURNAL OF THE INDONESIAN MATHEMATICAL SO-
CIETY, Vol. 24, No. 2, October 2018, pp. 47-53.

[3] Karami Hamed, Perfect 2-colorings of generalized Petersen graph GP(n,3), preprint
(arXive: 2009.07120 [math.CO]).
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L(2, 1)-number of the Mycielski of graphs

Kamal Dliou

National School of Applied Sciences (ENSA), Ibnu Zohr University, Agadir, Morocco

(This talk is based on joint work with Hicham El Boujaoui and Mustapha Kchikech.)

MSC2000: 05C78

An L(2, 1)-Labeling of a graph G = (V,E) is a function f from the vertex set V to the set
of all nonnegative integers such that |f(x)−f(y)| ≥ 2 if d(x, y) = 1 and |f(x)−f(y)| ≥ 1
if d(x, y) = 2. The span of f is the difference between the largest and the smallest
label used by f . The L(2, 1)-number or λ-number of a graph G, denoted by λ(G), is the
minimum span over all L(2, 1)-Labelings of G. The Mycielski’s construction is a well-
known construction which transform a k-chromatic graph G into (k+1)-chromatic graph
M(G), called the Mycielski graph of G, which has the same clique number as G.

In this paper we show that for any graph G, we have max(n+1, 2(4+1)) ≤ λ(M(G)) ≤
n + λ(G) + 1, where n and 4 are respectively the order and the maximum degree of G.
We show some graphs having λ(M(G)) = n + λ(G) + 1. Next we give a condition for
a graph implying λ(M(G)) = n + 1. Then we determine the λ-number of the Mycielski
graph generated from the graph path Pn and the graph cycle Cn, using that and the lower
bound max(n+ 1, 2(4+ 1)), we characterize connected graphs realising λ(M(G)) equal
to 4, 6 and 7, which are the smallest values for λ(M(G)) for any non-trivial connected
graph. Finally, we conjecture that λ(M(G)) ≤ n +42 + 1, for any graph G of order n
and maximum degree 4.
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Discrepancies of Spanning Trees

Peleg Michaeli

Tel Aviv University

(This talk is based on joint work with Lior Gishboliner and Michael Krivelevich.)

MSC2000: 05C35, 05D10, 11K38

Discrepancy theory is concerned with colouring elements of a ground set so that each set
in a given set system is as balanced as possible. In the graph setting, the ground set is
the edge set of a given graph, and the set system is a family of subgraphs. In this talk,
I shall discuss the discrepancy of the set of spanning trees in general graphs, a notion
that has been recently studied by Balogh, Csaba, Jing and Pluhár. More concretely, for
every graph G and a number of colours r, we look for the maximum D such that in any
r-colouring of the edges of G, one can find a spanning tree with at least (n − 1 + D)/r
edges of the same colour. As our main result, we show that under very mild conditions
(for example, if G is 3-connected), D is equal, up to a constant factor, to the minimal
integer s such that G can be separated into r equal parts by removing s vertices. This
strong and perhaps surprising relation between the extremal quantity D and a geometric
quantity allows us to estimate the spanning-tree discrepancy for many graphs of interest.
In particular, we reprove and generalize results of Balogh et al., as well as obtain new
ones.
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Partial colouring of graphs:

What to do if you don’t have enough colours?

Xinyi Xu

London School of Economics and Political Science

(This talk is based on joint work with Jan van den Heuvel.)

MSC2000: 05C15

Suppose you are given a graph G for which the vertices can be properly coloured with k
colours, but you only have s < k colours available. Then it is an easy observation that

you can properly colour at least a fraction
s

k
of the vertices of G. (More formally: There

exists an induced subgraph H of G such that H is s-colourable and |V (H)| ≥ s

k
|V (G)|.)

In this talk we look at this idea of partial colouring for some other colouring concepts,
such as list colouring, fractional colouring and multicolouring. Our guiding question will
always be: If we have only a fraction α of the required colour-set available, can we always
colour at least a fraction α of the graph?
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Vertex stability and edge stability for the
chromatic index of graphs

Saeid Alikhani

Department of Mathematics, Yazd University, Iran

(This talk is based on joint work with Mohammad R. Piri.)

MSC2000: 05C15, 05C25

Let G = (V,E) be a simple graph. A function c : E → {c1, . . . , ck} with c(e1) 6= c(e2) for
any two adjacent edges e1 and e2 is a proper k-edge coloring of G. The minimum k for
which G admits a proper k-edge coloring is the chromatic index of G, and denoted by
χ′(G). The vertex stability of the chromatic index is denoted by vsχ′(G), is the minimum
number of vertices of G whose removal results in graph H ⊆ G with χ′(H) 6= χ′(G).
Also the edge stability of the chromatic index is denoted by, esχ′(G), is the minimum
number of edges of G such that their deletion results in a graph H with χ′(H) 6= χ′(G).
In this talk we present our new results on these two parameters. More precisely, we give
some general bounds for vsχ′(G) and esχ′(G) and determine these parameters exactly for
specific classes of graphs such as joins of graphs, and corona of graphs.

[1] S. Akbari, S. Klavžar, N. Movarraei, M. Nahvi, Nordhaus-Gaddum and other bounds
for the chromatic edge-stability number, European J. Combin. 84 (2020), 103042, 8
pp.

[2] S. Alikhani and S. Soltani, Stabilizing the distinguishing number of a graph, Comm.
Alg. 46(12) (2018) 5460-–5468.

[3] M.A. Henning and M. Krzywkowski, Total domination stability in graphs, Discrete
Appl. Math. 236(19) (2018) 246–255.

[4] A. Kemnitz, M. Marangio, On the ρ-edge stability number of graphs, Disscus. Math.
Graph Theory. Available at https://doi.org/10.7151/dmgt.2255.

[5] A. Kemnitz, M. Marangio, N. Movarraei, On the chromatic edge stability number of
graphs, Graphs Combin. 34 (2018) 1539-–1551.
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A better upper bound of the locating-chromatic
number of trees

Edy Tri Baskoro
UPDATE: This talk will now be presented by Devi Imulia Dian Primaskun.

Institut Teknologi Bandung, Indonesia

(This talk is based on joint work with Devi Imulia Dian Primaskun.)

MSC2000: 05C12, 05C15

Let G = (V,E) be a simple connected graph. The distance d(u, S) from a vertex u to a
set S in G is defined as min{d(u, v)|v ∈ S}. The color code ac(u) of vertex u in G under a

proper k-coloring c is defined as the k-tuple (d(u,C
(1)
c ), d(u,C

(2)
c ), · · · , d(u,C

(k)
c )), where

C
(i)
c is the set of all vertices of color i. A proper k-coloring c is called a locating coloring of

G if for any pair of distinct vertices u and v, we have ac(u) 6= ac(v). The locating-chromatic
number of a graph G is the smallest integer k such that G admits a locating k-coloring.
The study on the locating-chromatic number of graphs was introduced by Chartrand et
al. (2002). This notion is, in fact, a special case of the partition dimension of graphs.
This study has received much attention. However, the results are still very limited. The
locating-chromatic numbers of some trees have been discovered, such as amalgamations
of stars by Asmiati et al. (2011), complete n-ary trees by Welyyanti et al. (2013), and
all trees with locating-chromatic number 3 by Baskoro and Asmiati (2013). However for
most classes of trees, their locating-chromatic numbers are still open. Recently, Furuya
and Matsumoto (2019) proposed an algorithm to derive an upper bound of the locating
chromatic number of any tree T . This upper bound depends on the number of leaves and
the number local end-branches in T . In this talk, we propose an algorithm for deriving
a better upper bound of the locating-chromatic number of any tree T . This algorithm is
based on subtrees called palms of the tree T .

Keywords: locating-chromatic number, tree, algorithm, upper bound

140



Friday 11:20, Zoom 3

Chromatic identities on maximal triangle-free
graphs

Ez-Zobair Bidine

Hassan First University of Settat, Morocco

(This talk is based on joint work with M. Kchikech, O. Togni and T. Gadi.)

MSC2000: 05C15,05C70,05C12

A graph is maximal triangle-free if no edge may be added without producing a triangle.
A triangle-free graph is maximal triangle-free if and only if its diameter is two. The
neighborhood of every vertex in triangle-free graphs is an independent set. Then, in such
graphs, it is evident that ∆(G) ≤ α(G), where ∆(G) and α(G) stand for the maximum
degree and the independence number of a graph G, respectively.

In 1964, Vizing [1] showed that every graph G has edge-chromatic number χ′(G) either
∆(G) (known as Class I graphs) or ∆(G) + 1 (known as Class II graphs). Deciding the
class of a given graph is NP-complete problem [2], even when restricted to triangle-free
graphs with ∆ = 3 [3].

A k-packing coloring of a graph G with vertex set V , for some integer k, is a mapping
f : V → {1, 2, . . . , k} such that for any two distinct vertices u and v from V : if f(u) =
f(v) = i, then dG(u, v) > i, where dG(u, v) is the distance between u and v in G. The
packing chromatic number χρ(G) of a graph G is the smallest integer k such that the
graph G has a k-packing coloring [4]. A well known upper bound of χρ(G) for some graph
G is |G| − α(G) + 1 with equality if the diameter of G is two [4]. In this work, we prove
the existence of class I maximal triangle-free graph where the parameters α, ∆ and χρ
coincide, i.e maximal triangle-free graph G such that

α(G) = ∆(G) = χρ(G) = χ′(G).

[1] Vadim G Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz,
3:25–30, 1964.

[2] I. Holyer. The np-completeness of edge-coloring. SIAM Journal on computing,
10(4):718–720, 1981.

[3] D. P. Koreas. The NP-completeness of chromatic index in triangle free graphs with
maximum vertex of degree 3. Applied mathematics and computation, 83(1):13–17,
1997.

[4] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J M. Harris;, and D.F. Rall. Broad-
cast chromatic numbers of graphs. Ars Combinatoria, 86:33–50, 2008.
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Acyclic, Star and Injective Colouring for H-free
graphs

Jan Bok

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

(This talk is based on joint work with Nikola Jedličková, Barnaby Martin, Pascal
Ochem, Daniël Paulusma, and Siani Smith.)

MSC2000: 05C15, 05C85

A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest,
star forest or disjoint union of vertices and edges, respectively. Hence, every injective
colouring is a star colouring and every star colouring is an acyclic colouring. The corre-
sponding decision problems are Acyclic Colouring, Star Colouring and Injec-
tive Colouring (the last problem is also known as L(1, 1)-Labelling). A classical
complexity result on Colouring is a well-known dichotomy for H-free graphs (a graph
is H-free if it does not contain H as an induced subgraph). In contrast, there is no
systematic study into the computational complexity of Acyclic Colouring, Star
Colouring and Injective Colouring despite numerous algorithmic and structural
results that have appeared over the years. We perform such a study and give almost
complete complexity classifications for Acyclic Colouring, Star Colouring and
Injective Colouring on H-free graphs (for each of the problems, we have one open
case). Moreover, we give full complexity classifications if the number of colours k is fixed,
that is, not part of the input. From our study it follows that for fixed k the three problems
behave in the same way, but this is no longer true if k is part of the input. To obtain
several of our results we prove stronger complexity results that in particular involve the
girth of a graph and the class of line graphs of multigraphs.

Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Daniël Paulusma and Siani Smith. Acyclic
Colouring, Star Colouring and Injective Colouring for H-Free Graphs. Proc. ESA 2020,
LIPIcs 173, 22:1-22:22, 2020.

Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Daniël Paulusma and Siani Smith. Injective
colouring for H-free graphs. Proc. CSR 2021, LNCS, to appear.

Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Pascal Ochem, Daniël Paulusma and Siani
Smith. Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs.
https://arxiv.org/abs/2008.09415, 2021.
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Efficient generation of elimination trees
and Hamilton paths on graph associahedra

Arturo Merino

TU Berlin + University of Warwick

(This talk is based on joint work with Jean Cardinal and Torsten Mütze.)

MSC2000: 05C45, 52B05

Graph associahedra are a large class of polytopes defined with respect to a finite graphG [1,
5], and they generalize many classical polytopes, such as standard associahedra, permu-
tahedra, hypercubes, stellohedra, cyclohedra etc., which arise for particular choices of G.
Their vertices are all elimination trees of G, i.e., all ways of removing vertices of G one
by one, and their edges correspond to tree rotations. Manneville and Pilaud [4] proved
that for any graph G with at least two edges, the graph associahedron has a Hamilton
cycle, but their proof does not translate into an efficient algorithm.

In this work we present a simple and efficient algorithm for computing a Hamilton path
on the graph associahedron for the case when G is a chordal graph, which includes
many interesting subclasses, such as paths, stars, trees, k-trees, complete graphs, interval
graphs, and split graphs. The algorithm runs in time O(m+n) per generated elimination
tree ofG, wherem and n are the number of edges and vertices ofG, respectively, which can
be improved to O(1) for trees G. We made this algorithm available for experimentation on
the Combinatorial Object Server [2]. Our algorithm generalizes several known Gray codes,
and gives new Gray codes for interesting combinatorial objects. Moreover, it produces
a Hamilton cycle on the graph associahedron of G, rather than just a Hamilton path,
if G is chordal and 2-connected. The algorithm also characterizes chordality, i.e., it fails
to compute a Hamilton path for non-chordal graphs G. These results are obtained by
applying the permutation language framework proposed by Hartung, Hoang, Mütze, and
Williams [3], and by encoding elimination trees by permutations.

[1] M. P. Carr and S. L. Devadoss. Coxeter complexes and graph-associahedra. Topology
Appl., 153(12):2155–2168, 2006.

[2] The Combinatorial Object Server: http://www.combos.org/elim.

[3] E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via
permutation languages. I. Fundamentals. To appear in Trans. Amer. Math. Soc.,
2021.

[4] T. Manneville and V. Pilaud. Graph properties of graph associahedra. Sém. Lothar.
Combin., 73:Art. B73d, 31, 2015.

[5] A. Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN,
(6):1026–1106, 2009.
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Reconstructing trees from small cards

Jane Tan

University of Oxford

(This talk is based on joint work with Carla Groenland, Tom Johnston and Alex Scott.)

MSC2000: 05C60

The `-deck of a graph G is the multiset of all induced subgraphs of G on ` vertices. Kelly
and Ulam’s classical reconstruction conjecture states that all graphs on n ≥ 3 vertices are
uniquely determined by (or reconstructible from) their (n− 1)-decks. While well-studied,
this conjecture is very much open. When it comes to smaller cards, a basic observation is
that reconstruction becomes more difficult as ` decreases. Thus, given a class of graphs
that is reconstructible from the (n − 1)-deck, we can ask: what is the smallest ` for
which graphs in that class are also reconstructible from the `-deck? We shall discuss this
question for trees. In particular, we will show that trees are reconstructible from their
`-decks when ` ≥ (8/9 + o(1))n, improving on a result of Giles from 1976 which required
` ≥ n− 2. This is good news for a conjecture of Nýdl, although we have some bad news
for that conjecture as well.
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Graphs with two moplexes are more than perfect

Matjaž Krnc

University of Primorska,
Faculty of Mathematics, Natural Sciences and Information Technologies

(This talk is based on joint work with Clément Dallard,
Robert Ganian, Meike Hatzel, and Martin Milanič.)

MSC2000: 05C75, 05C45

A well-known result by Dirac (1961) states that every chordal graph contains a simplicial
vertex. This theorem proved to be very useful for structural and algorithmic applications.
Moplexes, in the setting of general graphs, are an analogue of simplicial vertices in chordal
graphs, as Berry and Bordat (1998) proved that every non-complete graph contains at
least two moplexes.

There are results on the structure of chordal graphs with a bounded number of simplicial
modules, for example the chordal graphs having at most two simplicial modules are
interval. This motivates the research of graphs with a bounded number of moplexes. As
only complete graphs have exactly one moplex, we consider the smallest interesting case:
the class of graphs with at most two moplexes. Berry and Bordat (2001) proved that this
class of graphs contains all connected proper interval graphs and is contained in the class
of AT-free graphs. We strengthen the latter inclusion in two ways. First, we generalise it
by proving that the asteroidal number yields a lower bound on the number of moplexes.
Second, as our main structural result, we show that graphs with at most two moplexes
are cocomparability.

So, as the class of connected graphs with at most two moplexes is sandwiched between the
connected proper interval graphs and cocomparability graphs, this leads to the natural
question of whether the presence of at most two moplexes guarantees a sufficient amount
of structure to efficiently solve problems that are known to be intractable on cocompara-
bility graphs, but not on proper interval graphs. For two such problems, namely Graph
Isomorphism and Max-Cut, we show that they stay hard on the graphs with two
moplexes. On the other hand, we prove that every connected graph with two moplexes
contains a Hamiltonian path.
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Erdős-Hajnal conjecture for Galaxies with
Spiders

Soukaina Zayat

Lebanese University

(This talk is based on joint work with Salman Ghazal.)

MSC2000: 05C20

Abstract

The celebrated Erdős-Hajnal conjecture states that for every undirected graph
H there exists ε(H) > 0 such that every undirected graph on n vertices that does
not contain H as an induced subgraph contains a clique or a stable set of size at
least nε(H). This conjecture has a directed equivalent version stating that for every
tournament H there exists ε(H) > 0 such that every H−free n−vertex tournament
T contains a transitive subtournament of order at least nε(H). This conjecture is
known to hold for a few infinite families of tournaments. In this talk I will discuss
a joint work with Salman Ghazal in which we construct a new infinite family of
tournaments - the family of so-called galaxies with spiders and prove the correctness
of the conjecture for every galaxy with spiders.
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On Hamilton Cycles in Kneser Graphs

Namrata

University of Warwick

(This talk is based on joint work with Arturo Merino, Torsten Mütze and Pascal Su.)

MSC2000: 05C45

For integers k ≥ 1 and n ≥ 2k+1, the Kneser graph K(n, k) has as vertices all k-element
subsets of {1, . . . n} and its edges connect pairs of subsets that are disjoint. These graphs
were introduced by Lovász [4] in his celebrated proof of Kneser’s conjecture, showing
that the chromatic number of K(n, k) equals n − 2k + 2. Also, the maximum size of an
independent set in K(n, k) equals

(
n−1
k−1

)
by the famous Erdős-Ko-Rado theorem.

It has long been conjectured that all Kneser graphs K(n, k) have a Hamilton cycle, with
one notable exception, namely the Petersen graph K(5, 2). This is a special case of an
even more general conjecture due to Lovász [3], which asserts that every connected vertex-
transitive graph has a Hamilton cycle, apart from K(5, 2) and four additional exceptions.
To date, the conjecture about Kneser graphs has been verified in the dense case when
n ≥ 2.62k + 1 [1] and in the sparse case when n = 2k + 2a, a ≥ 0 [5].

In this work we prove that Kneser graphs K(n, k) have a Hamilton cycle for all n ≥ 7
that are a prime number or twice a prime number. These results are obtained from a new
construction of a cycle factor in K(n, k) via the parenthesis matching approach of Greene
and Kleitman [2]. It turns out that these

time

cycles can be described and analyzed by a
physical system of multiple moving ‘gliders’
that participate in collisions and overtak-
ings, while preserving kinetic energy. The
figure shows the collision of two gliders.

[1] Y. Chen. Triangle-free Hamiltonian Kneser graphs. J. Combin. Theory Ser. B,
89(1):1–16, 2003.

[2] C. Greene and D. J. Kleitman. Strong versions of Sperner’s theorem. J. Combin.
Theory Ser. A, 20(1):80–88, 1976.

[3] L. Lovász. Problem 11. In Combinatorial Structures and Their Applications (Proc.
Calgary Internat. Conf., Calgary, Alberta, 1969). Gordon and Breach NY, 1970.

[4] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory
Ser. A, 25(3):319–324, 1978.

[5] T. Mütze, J. Nummenpalo, and B. Walczak. Sparse Kneser graphs are Hamiltonian.
To appear in J. London Math. Soc., 2021.
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On 12-regular nut graphs

Riste Škrekovski

University of Ljubljana & Faculty of Information Studies in Novo Mesto

(This talk is based on joint work with Nino Bašić & Martin Knor.)

MSC2000: 05C50, 15A18

A nut graph is a simple graph whose adjacency matrix is singular with 1-dimensional
kernel and corresponding eigenvector with no zero elements. For each d ∈ {3, 4, . . . , 11}
are known all values n for which there exists a d-regular nut graph of order n. In the talk,
we consider all values n for which there exists a 12-regular nut graph of order n.
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On Proximity and Remoteness in Graphs and
Digraphs

Sonwabile Mafunda

University of Johannesburg, South Africa

(This talk is based on joint work with Peter Dankelmann, Betsie Jonck & another joint
work with Jiangdong Ai, Stefanie Gerke, Gregory Gutin.)

MSC2000: 05C12

In a connected, finite graph or a strong, finite digraph G of order n, the distance dG(u, v)
from a vertex u to a vertex v is the length of a shortest u− v (di)path in G. The average
distance σ̄(x) of a vertex x is the average of the distance from x to all other vertices in G,
that is, σ̄(x) = (|V (G)| − 1)−1

∑
y∈V (G)

dG(x, y). The proximity π(G) and remoteness ρ(G)

of a (di)graph G are defined by π(G) = min
G
{σ̄(x)| x ∈ V } and ρ(G) = max

G
{σ̄(x)| x ∈ V }

respectively. For a graph, the minimum degree, δ(G) is the smallest of the degrees of the
vertices of G.
Bounds on proximity and remoteness in terms of order were given by Aouchiche and
Hansen in 2011 for graphs. In 2015 Dankelmann strengthened these bounds by taking
into account also the minimum degree.
In this talk we show that these bounds can be improved for triangle-free graphs and for
graphs not containing a 4-cycle. We also present results on proximity and remoteness of
directed graphs.
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Optimal Adjacent Vertex-Distinguishing
Edge-Colorings of Circulant Graphs

Souad Slimani

Laboratoire LaROMaD, sfr Maths à Modeler. U.S.T.H.B Université, Faculté des
Mathématiques

(This talk is based on joint work with Sylvain Gravier and Hippolyte Signargout.)

MSC2000: 05C15-05C38

A k-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two
adjacent vertices are distinguished by the set of colors appearing in the edges incident
to each vertex. The smallest value k for which G admits such coloring is denoted by
χ′a(G). This notion was introduced by Zhang et al.[5] and they conjectured that if G is
a simple connected graph on at least 3 vertices and G 6= C5 (a cycle of order 5) then
∆(G) ≤ χ′a(G) ≤ ∆(G) + 2. For n ∈ N∗ and S ⊂ Zn, the circulant graph Cn(S) is the
non-directed graph whose n vertices are the elements of Zn with an edge (i, j) if and only
if |i− j| ∈ S. In this paper we will say two vertices i and j are at distance d and that an
edge (i, j) is of length d if |i− j| = d. We write [[a, b]] = {i ∈ N|a ≤ i ≤ b}. We prove that
χ′a(G) = 2R + 1 for most circulant graphs Cn([[1, R]]).

[1] P.N. Balister, E. Györi, J. Lahel and R. H. Schelp. Adjacent Vertex Distinguishing
Edge-Colorings. SIAM Journal on Discrete Mathematics, 21(1) :237, 2007.

[2] J. L. Baril, H. Kheddouci and O. Togni. Adjacent Vertex Distinguishing Edge-
Colorings of Meshes and Hypercubes. The Australasian Journal of Combinatorics,
35 : 89–102, 2006

[3] H. Hatami. δ+300 is a Bound on the Adjacent Vertex-Distinguishing Edge Chromatic
Number. Journal of Combinatorial Theory, Series B, 95(2): 246–256, 2005

[4] W. Wang and Y. Wang. Adjacent Vertex Distinguishing Edge-Colorings of Graphs
With Smaller Maximum Average Degree. Journal of Combinatorial Optimization,
19(4) : 471–485, 2010

[5] Z. Zhang, L. Liu and J. Wang. Adjacent Strong Edge Colorings of Graphs. Applied
Mathematics Letters, 15 (5) : 623–626, 2020
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Colour-bias problems for dense graphs

Andrew Treglown

University of Birmingham

(This talk is based on joint work with József Balogh, Béla Csaba and András Pluhár;
Andrea Freschi, Joseph Hyde and Joanna Lada.)

MSC2000: 05C35, 05C15

The study of colour-biased structures in graphs concerns the following problem. Given
graphs H and G, what is the largest t such that in any r-colouring of the edges of G,
there is always a copy of H in G that has at least t edges of the same colour? Note if H
is a subgraph of G, one can trivially ensure a copy of H with at least |E(H)|/r edges of
the same colour; so one is interested in when one can achieve a colour-bias significantly
above this. The 2-colour version of the problem is often stated in the language of graph
discrepancy.

The topic was first raised by Erdős in the 1960s but has seen a resurgence of interest
in the last couple of years. In this talk we survey recent progress in the area, including
results on Hamilton cycles, trees and clique factors. We will also highlight several open
problems.
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The Erdős-Rothschild problem

Katherine Staden

University of Oxford

(This talk is based on joint work with Oleg Pikhurko.)

MSC2000: 05D99, 05C15, 05B20

Consider an n-vertex graph G whose edges are coloured with s colours so that there
is no monochromatic clique of size k, and call such a colouring of G valid. The Erdős-
Rothschild problem from 1974 is to determine the maximum number of valid colourings
over all n-vertex graphs G. This problem is in general wide open and an exact (or even
asymptotic) answer is only known for a few pairs (k, s). In this talk I will discuss a method
for obtaining new exact results.
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Orthogonal Colourings of Random Graphs

Kyle MacKeigan

Dalhousie University, Canada

(This talk is based on joint work with Jeannette Janssen.)

MSC2000: 05C15, 05C60, 05C80,

Two colourings of a graph are orthogonal if they have the property that when two vertices
receive the same colour in one colouring, then those vertices must receive distinct colours
in the other colouring. In this talk, orthogonal colourings of random geometric graphs
are discussed. It is shown that sparse random geometric graphs have optimal orthogonal
colourings with high probability. Then, an upper bound on the orthogonal chromatic
number for dense random geometric graphs is obtained.
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Conflict-free coloring game

Paola Tatiana P. Huaynoca

Fluminense Federal University

(This talk is based on joint work with Simone Dantas and Rodrigo Marinho.)

MSC2000: 05C15, 05C57

In Cellular Networks, communication between bases and mobile devices is established
via radio frequencies. Interference occurs if one particular device communicates with two
different bases that have the same frequency. Thus, every device must contact a base
with a unique frequency and, since having a lot of different frequencies is expensive, it is
important to minimize the number of frequencies without interference between them.

In order to study the aforementioned problem, in 2002, Even, Lotker, Ron and Smorodin-
sky [4] introduced the concept of Conflict Free coloring in a geometric scenario. The
Conflict-Free coloring problem of a graph G consists of assigning different colors to the
vertices of G such that, for every vertex v there exists a vertex v′ in the neighborhood of v,
such that the color of v′ differs from the color of every other vertex in the neighborhood of
v. This problem has attracted a lot of attention in the last decades. In 2009, for instance,
Cheilaris considered these colorings not only on graphs, but also on hypergraphs [3].

Inspired by the Conflict-Free Coloring problem and by the well known coloring game
(Gardner [5], Bodlaender [2], Beaulieu, Burke and Duchêne [1]), we study the Conflict-
Free k-coloring game. The game starts with an uncoloured graph G, k ≥ 2 different colors,
and two players, Alice and Bob, who alternately take turns coloring the vertices of G.
Both players respect the following rule: for every vertex v if the neighborhood Nv of v
is fully colored then there exists a color which was used only once in Nv. Alice wins the
game if the final coloring is a Conflict-Free k-coloring, otherwise Bob wins. We consider
both players playing optimally and we allow both to start the game. In this work, we
determine necessary and sufficient conditions for Alice to win, and we analyze the game
played on graph classes.

[1] G. Beaulieu, K. Burke and E. Duchêne: Impartial Coloring games, Theoretical Computer Science,
485 (2013) 49–60.

[2] H. Bodlaender, On the complexity of some coloring games, Graph-Theoretic Concepts in Computer
Science of Lecture Notes in Computer Science 484 (1991) 30–40.

[3] P. Cheilaris, Conflict-free coloring, City University of New York, New York, 2009.

[4] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict–free colorings of simple geometric regions with
applications to frequency assignment in cellular networks, SIAM Journal on Computing 33 (2003)
94–136.

[5] M. Gardner, Mathematical Games, Scientific American 23 (1981) 18–23.
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Small sums of five roots of unity

Ben Barber

University of Manchester

MSC2000: 11B75

How small can can the sum of k complex nth roots of unity be? The best bounds [1, 2]
on the minimum f(k, n) have the shape

k−n ≤ f(k, n) ≤ n−k/4+o(1),

with the upper bound valid only when n and k are both even. The cases k ≤ 4 can be
treated exactly, leading Myerson [1] to suggest k = 5 as holding particular interest.

One of the difficulties with k = 5 is that it prevents naive pigeonhole arguments. I’ll
describe new upper bounds of O(n−4/3), improving to O(n−7/3) infinitely often, that can
be viewed as a precision application of the pigeonhole principle in a tiny part of the
configuration space.

The corresponding configurations were suggested by examining exact minimum values
computed for n ≤ 221000. These minima can be explained at least in part by selection
of the best example from multiple families of competing configurations related to close
rational approximations.

[1] Gerald Myerson. Unsolved Problems: How Small Can a Sum of Roots of Unity Be? Amer. Math.
Monthly, 93(6):457–459, 1986.

[2] Terry Tao. How small can a sum of a few roots of unity be? MathOverflow, 2010.
https://mathoverflow.net/q/46068 (version: 2010-11-14).
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Four Dimensional Association Schemes Have
Cyclotomic Character Values

Roghayeh Maleki

University of Regina

(This talk is based on joint work with Allen Herman.)

MSC2000: 16Z05, 05E30

In 1980, Simon P. Norton posed the Cyclotomic Eigenvalue Question (CEQ) which asks
whether the entries of the character table of a commutative association scheme always
lie in a cyclotomic number field. The adjacency algebras of association schemes are a
special type of standard integral table algebras with integral multiplicites (SITAwIMs).
Character formulas for complete graphs, strongly regular graphs, and doubly regular tour-
naments imply the CEQ is true in dimensions 2 and 3.

In this talk we will show that the values of irreducible characters of SITAwIMs of dimen-
sion up to 4 lie in cyclotomic number fields. We also give an example of a SITAwIM with
noncyclotomic character values of dimension 5. This is joint work with Allen Herman.
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Counting substructures of highly symmetric
structures

Samuel Braunfeld

University of Maryland, College Park

MSC2000: 03C15, 05A16, 20B27

In the 1970s, Peter Cameron began studying orbit-counting for a group acting on a
countable space. This problem may be alternately viewed as starting with a countable
structure M satisfying the strong symmetry condition of homogeneity, and considering
the growth rate of the hereditary class of finite substructures of M , i.e. counting the
number of (unlabelled) substructures of size n for each n ∈ N.

We give a description of the spectrum of possible subexponential growth rates and of the
homogeneous structures that realize them. In particular, we prove there is a jump from
polynomial growth to the partition function as well as infinite families of further jumps,
and that these jumps in growth rate reflect jumps in the structural complexity of M .
This confirms some longstanding conjectures of Cameron and Macpherson.

The methods are primarily model-theoretic, but no prior knowledge will be assumed. One
goal will be to show that model theory and combinatorics can be very closely aligned.

[1] Samuel Braunfeld, Monadic stability and growth rates of ω-categorical structures, arXiv
preprint, arXiv:1910.04380 (2019).
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How many finiite rings are there?

Simon R. Blackburn

Royal Holloway University of London

(This talk is based on joint work with K. Robin McLean, University of Liverpool.)

MSC2000: 05A16

For a positive integer n, write f(n) for the number of isomorphism classes of rings of
order n. What can we say about f(n)?

Determining f(n) exactly for all n looks unrealistic, but in 1970 Kruse and Price [2]
stated an asymptotic result that gives the growth rate of f(n) as n goes to infinity. Sadly,
as pointed out by Knopfmacher [1], there is a problem with their proof. I will talk about
the problem, how to fix it, and how to improve the error term of the Kruse–Price result.
I will assume no knowledge of ring theory above a first undergraduate course.

[1] John Knopfmacher, ‘Arithmetical properties of finite rings and algebras, and analytic
number theory. III. Finite modules and algebras over Dedekind domains’, J. Reine
Angew. Math. 259 (1973), 157–170.

[2] R.L. Kruse and D.T. Price, Enumerating finite rings, J. Lond. Math. Soc. (2) 2 (1970)
149–159.
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From Convexity to Threshold Logic
with Lattices on the Path

M. Reza Emamy-K

UPR at Rio Piedras, San Juan, PR, USA

(This talk is based on joint work with Gustavo M. Meléndez Ŕıos.)

52A99, 52C99, 06D99

A cut-complex over the geometric unit n-cube is a proper cubical complex whose vertices
are strictly separable from the rest of the vertices of the n-cube by a hyperplane of Rn.
These objects render geometric presentations for threshold Boolean functions, and their
study leads to a convex geometric connection to threshold logic. We present an overview
of some of the results on this connection and define a poset on the set of all cut-complexes
that turns out to be a distributive lattice for dimensions n ≤ 4.

Keywords: Convexity, Hyperplanes, Hypercube Cuts, Distributive lattices.
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Voronoi Games on the Discrete Hypercube

Robert Johnson

Queen Mary, University of London

(This talk is based on joint work with A. Nicholas Day.)

MSC2000: 05C57, 91A46

Suppose that X is a metric space and S is a finite subset of X. The Voronoi cell of i ∈ S
is the set of all points of X which are closer to i than to any other element of S. In a
Voronoi game we think of the elements of S as competing players with the payoff to i
being the volume (under some measure) of its Voronoi cell (to complete the specification
of the game we need to state how the players can locate themselves or move within X).

A classical result in this area is the Median Voter Theorem which considers the setting
of two players with X being a real interval. This can be interpreted as a spatial voting
model; we have two candidates competing for vote share in an election where voters’
(and candidates’) opinions are represented by points on a continuous 1-dimensional (left-
wing/rightwing) spectrum. In higher dimensions the situation is much more complicated
and there is no analogue of the Median Voter Theorem.

Discrete Voronoi games have been much less studied than continuous ones and lead to
some appealing combinatorial problems. We will consider the underlying space X being
the discrete hypercube (in spatial voting terms, this can be thought of as an opinion space
described by d binary issues). The game is rather simple with two players on a hypercube
with uniform measure. However, with more players, or a different measure it becomes
much more interesting. We exhibit a variety of results and open questions, particularly
focussing on the existence of equilibria.
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Hyperplane coverings with multiplicities

Simona Boyadzhiyska

Freie Universität Berlin

(This talk is based on joint work with Anurag Bishnoi, Shagnik Das, and Tamás
Mészáros.)

MSC2000: 05B40

A well-known result of Alon and Füredi states that n hyperplanes are needed to cover all
nonzero points of Fn

2 while avoiding the origin. In this talk, we will generalize this result
to the setting where the points of Fn

2 \ {~0} must be covered at least k times, while the
origin can be covered by at most k − 1 hyperplanes. Exploiting a connection to coding
theory, and using combinatorial and probabilistic arguments, we will provide tight bounds
in certain ranges of the parameters n and k.
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Location-Domination in Binary Hamming Spaces:
An Improved Lower Bound

Tuomo Lehtilä

Université Claude Bernard Lyon 1, LIRIS, Lyon, France, and University of Turku,
Finland.

(This talk is based on joint work with Ville Junnila and Tero Laihonen from University
of Turku, Finland.)

MSC2000: 94B60; 94B65; 05C69; 05C76

A set of vertices C in a graph G = (V,E) is a locating-dominating code if each vertex
in V \ C has a distinct neighbourhood in C and none of these neighbourhoods is empty.
The cardinality of the smallest such code in graph G is denoted by γLD(G). Locating-
dominating codes have originally been introduced by Slater and Rall in 1980s and have
been widely studied since then. We concentrate on locating-dominating codes in the
binary Hamming space (or Hamming graph or hypercube) denoted by Fn.

The earliest lower bound for locating-dominating codes in Hamming spaces

γLD(Fn) ≥ 2n+1/(n+ 3)

is due to Slater in 2002. After that the lower bound has been improved by Honkala et al.
in 2004 to

γLD(Fn) ≥ 2n+1/(n+ 2 + 3/n− 2/n2).

The proof of Slater was based on a technique called share and the proof of Honkala et
al. on a father-son argument. In [2], we have combined these two methods together with
new schemes of shifting the share. We get a new improved lower bound

γLD(Fn) ≥
{

2n+1

n+1+2(n−1)/(3(n−4))
, if 10 ≤ n ≤ 12;

2n+1

n+2−4/(3n)+2/(n2−5n)
, if 13 ≤ n.

The strength of our approach is illustrated by the case n = 11, where the lower bound
is improved from 309 to 317 and the best known construction has cardinality 320 ([1]).
This gap of size four is smaller than what is known in Fn for 7 ≤ n ≤ 10, [2, Table 1].
Moreover, the small gap between the upper and lower bound also highlights how strong
the 320 size code is and we conjecture it to be the best possible.

[1] V. Junnila and T. Laihonen and T. Lehtilä. On regular and new types of codes for
location-domination. Discrete Appl. Math., 247:225–241, 2018.

[2] V. Junnila and T. Laihonen and T. Lehtilä. Improved Lower Bound for Locating-
Dominating Codes in Binary Hamming Spaces. arXiv:2102.05537, 2021.
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The minimum degree of minimal Ramsey graphs for
cliques

Anurag Bishnoi

TU Delft

(This talk is based on joint work with John Bamberg and Thomas Lesgourgues.)

MSC2000: 05D10, 05C55, 51E12

We will present a new upper bound of sr(Kk) = O(k5r5/2) on the Ramsey parameter
sr(Kk) introduced by Burr, Erdős and Lovász in 1976, which is defined as the smallest
minimum degree of a graph G such that any r-colouring of the edges of G contains a
monochromatic Kk, whereas no proper subgraph of G has this property. This improves
the previous upper bound of sr(Kk) = O(k6r3) proved by Fox et al. The construction
used in our proof relies on a group theoretic model of generalised quadrangles introduced
by Kantor in 1980.
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The Ramsey number for 4-uniform tight cycles

Vincent Pfenninger

University of Birmingham

(This talk is based on joint work with Allan Lo.)

MSC2000: 05C35, 05C65, 05D10

The Ramsey number for a k-graph (k-uniform hypergraph) H is the least integer N such
that any 2-edge-colouring of the complete k-graph on N vertices contains a monochro-
matic copy of H. A k-uniform tight cycle is a k-graph with a cyclic ordering of its vertices
such that its edges are precisely the sets of k consecutive vertices in that ordering. We
prove that the Ramsey number for the 4-uniform tight cycle on 4n vertices is (5 + o(1))n.
This is asymptotically tight and confirms a special case of a conjecture of Haxell,  Luczak,
Peng, Rödl, Ruciński and Skokan.
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Bounds on Ramsey Games via Alterations

He Guo

Georgia Institute of Technology

(This talk is based on joint work with Lutz Warnke.)

MSC2000: 05C55, 05C80, 05D10, 05D40

In this talk we introduce a refined alteration approach for constructing H-free graphs:
we show that removing all edges in H-copies of the binomial random graph does not
significantly change the independence number (for suitable edge-probabilities); previous
alteration approaches of Erdos and Krivelevich remove only a subset of these edges. We
present two applications to online graph Ramsey games of recent interest, deriving new
bounds for Ramsey, Paper, Scissors games and online Ramsey numbers.

H. Guo and L. Warnke. Bounds on Ramsey Games via Alterations. Preprint (2019).
arXiv:1909.02691.
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Orientation Ramsey thresholds

Tássio Naia

Instituto de Matemática e Estat́ıstica, USP

(This talk is based on joint work with G. Barros, B. P. Cavalar, G. O. Mota and
Y. Kohayakawa.)

MSC2000: 05D10,05C80,05C20

If G is a graph and ~H is an oriented graph, we write G→ ~H to say that every orientation
of G contains ~H as a subdigraph. Since every graph admits an acyclic orientation, we have
that G 6→ ~H whenever ~H has a directed cycle v1 → v2 → · · · → vm → v1. We consider the
case in which G is the binomial random graph G(n, p) and study the threshold p ~H = p ~H(n)

for the property G(n, p) → ~H, where ~H is an acyclically oriented graph. In this talk we
shall present some recent results about p ~H .

For any graph or oriented graph G, the maximum density and (when v(G) ≥ 3) the
maximum 2-density of G are, respectively,

m(G) := max
J⊆G

v(J)≥1

e(J)

v(J)
and m2(G) := max

J⊆G
v(J)≥3

e(J)− 1

v(J)− 2
.

It can be shown that p ~H is always bounded above by n−1/m2( ~H) (we ignore multiplicative
constants). We show a matching lower bound for some classes of directed graphs. Inter-

estingly, we also show that if ~H is a transitive triangle, or is formed by a rooted product
of an oriented tree and a transitive triangle, then p ~H � n−1/m2( ~H). This contrasts to the
classical edge-colouring threshold for the presence of a monochromatic copy of a graph H
in G(n, p), where the threshold is n−1/m2(H) whenever, for instance, H has a cycle.

For example, we show that if ~H is a transitive tournament or acyclically oriented cycle,
then

p ~H =

{
n−1/m2( ~H) if v( ~H) ≥ 4,

n−1/m( ~H) if v( ~H) = 3.
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Tangled Paths: A Random Graph Model from
Mallows Permutations

John Sylvester

University of Glasgow

(This talk is based on joint work with Jessica Enright, Kitty Meeks, and William
Pettersson.)

MSC2000: 05C80, 05A05, 68Q87, 05C78.

We introduce a new random graph model P(n, q) which results from taking the union of
two paths of length n ≥ 1, where the vertices of one path have been relabelled according to
a permutation sampled from the Mallows distribution with real parameter 0 < q(n) ≤ 1.

The aforementioned Mallows distribution [1] samples an n element permutation σ with
probability proportional to qinv(σ), where inv(σ) counts the number of inverted pairs of
elements in σ. Increasing q has the following effect on the resulting random graph P(n, q):
if q is close to 0 the graph bears resemblance to a path and as q tends to 1 it becomes an
expander.

In order to further understand the effect of the parameter q on the structure of P(n, q)
we obtained bounds on the treewidth and cutwidth in terms of q, and show the diameter
is constant for fixed q < 1. We also prove a sharp threshold for the property of having a
separator of size one.

[1] C. L. Mallows. Non-null ranking models. I. Biometrika, 44:114–130, 1957.
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Prague Dimension of Random Graphs

Kalen Patton

Georgia Institute of Technology

(This talk is based on joint work with He Guo, Lutz Warnke.)

MSC2000: 05C80, 05C15, 05C62

The Prague dimension of graphs was introduced by Nesetril, Pultr and Rodl in the 1970s.
Proving a conjecture of Furedi and Kantor, we show that the Prague dimension of the
binomial random graph is typically of order n/ log n for constant edge-probabilities. The
main new proof ingredient is a Pippenger-Spencer type edge-coloring result for random
hypergraphs with large uniformities, i.e., edges of size O(log n).

Based on joint work with He Guo and Lutz Warnke, see https://arxiv.org/abs/2011.09459.
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The jump of the clique chromatic number of
random graphs

Lutz Warnke

Georgia Institute of Technology

(This talk is based on joint work with Lyuben Lichev and Dieter Mitsche.)

MSC2000: 05C80,05C15,60C05

The clique chromatic number of a graph is the smallest number of colors in a vertex
coloring so that no inclusion-maximal clique is monochromatic (ignoring isolated vertices).
Settling an open problem of McDiarmid, Mitsche and Pra lat, in this talk we explain the
surprising polynomial ‘jump’ of the clique chromatic number of the binomial random
graph Gn,p around edge-probability p ≈ n−1/2. Our proof resolves this unusually steep
transition by a mix of approximation and concentration arguments, which enables us to
go beyond Janson’s inequality used in previous work. As a by-product, we also determine
the clique chromatic number of Gn,p up to logarithmic factors for all edge-probabilities p.
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On a k-matching algorithm and finding k-factors
in random graphs with minimum degree k + 1 in

linear time

Michael Anastos

Freie Universität Berlin

MSC2000: 05C80, 05C85

We prove that for k+ 1 ≥ 3 and c > (k+ 1)/2 w.h.p. the random graph on n vertices, cn
edges and minimum degree k+ 1 contains a (near) perfect k-matching. As an immediate
consequence we get that w.h.p. the (k + 1)-core of Gn,p, if non empty, spans a (near)
spanning k-regular subgraph. This improves upon a result of Chan and Molloy [2] and
completely resolves a conjecture of Bollobás, Kim and Verstraëte [1]. In addition, we show
that w.h.p. such a subgraph can be found in linear time. A substantial element of the
proof is the analysis of a randomized algorithm for finding k-matchings in random graphs
with minimum degree k + 1.

[1] B. Bollobás, J.H. Kim and J. Verstraëte, Regular subgraphs of random graphs, Ran-
dom Structures & Algorithms.29(2006), 1-13.

[2] S.O. Chan and M. Molloy, (k+1)-cores have k-factors,Combinatorics, Probability and
Computing, 21(6)(2012), 882-896.
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Space vectors forming rational angles

Alexander Kolpakov

Université de Neuchâtel

(This talk is based on joint work with Kiran S. Kedlaya,
Bjorn Poonen, and Michael Rubinstein.)

MSC2000: 52B10, 11R18, 14Q25, 51M04

We classify all sets of non-zero vectors in R3 such that the angle formed by each pair
is a rational multiple of π. The special case of four-element subsets lets us classify all
tetrahedra whose dihedral angles are multiples of π, solving a 1976 problem of Conway
and Jones: there are 2 one-parameter families and 59 sporadic tetrahedra, all but three
of which are related to either the icosidodecahedron or the B3 root lattice. This becomes
possible by applying a blend of algebraic geometry, group theory, combinatorics, and
polyhedral geometry.

We start by determining all possible rational-angled 4-line configurations, of which the
rational-angled tetrahedra are a subset. Geometry reduces the problem to solving a poly-
nomial equation whose variables are constrained to lie in the set µ of all roots of unity.
There are two known methods for solving equations in roots of unity: one is based on
classifying vanishing sums of roots of unity, and the other is based on computing torsion
closures of semi-abelian varieties. The complexity of each algorithm grows faster than
exponentially: given that our polynomial equation has 105 monomials in 6 variables none
of these approaches will work directly! The previous record was only 12 monomials.

The key idea, never before used to solve equations in roots of unity in characteristic 0, of
building upon the recent result of Dvornicich and Zannier by working first in the quotient
Z[µ]/(2) of the subring Z[µ] ⊂ C. This makes the problem barely solvable in a number
of steps.

First, reducing modulo 2 yields a polynomial equation in Z[µ]/(2) with only 12 monomi-
als. We adapt the classification of vanishing sums of unity to parametrise all solutions in
µ to such equations in Z[µ]/(2). This restricts the possible 6-tuples to lie in finitely many
families, each parametrized by at most 3 variables. Second, substituting each parametri-
sation back into the original equation yields a number of simpler polynomial equations,
no longer mod 2, in at most 3 variables. We solve each of these by computing torsion
closures and making use of the extremely rich W (D6) symmetry of the original equation.

Finally, we proceed to finding all maximal rational-angled line configurations.

The manuscript is available as https://arxiv.org/abs/2011.14232. The code for the
computations therein, written in c++, Magma, SageMath, and Singular is available at
https://github.com/kedlaya/tetrahedra/
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On the Erdős-Ko-Rado theorem for transitive
groups

Sarobidy Razafimahatratra

University of Regina

(This talk is based on joint work with Karen Meagher and Pablo Spiga.)

MSC2000: 05C35, 05C69

A set of permutations F of a finite transitive group G ≤ Sym(Ω) is intersecting if any two
permutations in F agree on an element of Ω. The intersection density of the intersecting
set F ⊂ G is the rational number ρ(F) := |F|

|Gω | , where ω ∈ Ω. The intersection density of

the group G is the number ρ(G) := max{ρ(F) : F ⊂ G is intersecting}. The group G is
said to have the Erdős-Ko-Rado (EKR) property if ρ(G) = 1.

The standard tool used to study the EKR property of the transitive group G is its
derangement graph ΓG. This graph is the Cayley graph of G with connection set equal to
the set of all derangements of G (i.e., the fixed-point-free elements).

I will talk about some recent progress on the construction of transitive groups that do not
have the EKR property. I will focus on the transitive groups with complete multipartite
derangement graphs. I will also present some open problems on the intersection density
of transitive groups of certain degrees.
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Series–Parallel Delta-Matroids

Steven Noble

Birkbeck, University of London

(This talk is based on joint work with Criel Merino and Iain Moffatt.)

MSC2000: 05B35, 05C10, 05C31, 05C75

Series–parallel networks form a familiar class of graphs. They are the graphs that can be
built from a circuit with two edges by repeatedly adding edges in parallel or series with
existing edges. It is possible to characterize them in several ways, for example, they are
the 2-connected graphs:

1. for which the coefficient of x in the Tutte polynomial is equal to 1;

2. containing no K4-minor;

3. constructed from circuits with 2 or 3 edges or the graph comprising 3 parallel edges
by repeatedly using 2-sums.

We show that there is an analogous class of ribbon graphs (or equivalently 2-cell embedded
graphs) which has characterizations corresponding to each of those described above.
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Hamilton transversals in random Latin squares

Tom Kelly

University of Birmingham

(This talk is based on joint work with Stephen Gould.)

MSC2000: 05B15, 05C45, 05C80

Gyárfás and Sárközy [3] conjectured that every n × n Latin square has a “cycle-free”
partial transversal of size n− 2. We confirm this conjecture in a strong sense for almost
all Latin squares, by showing that as n→∞, all but a vanishing proportion of n×n Latin
squares have a Hamilton transversal, i.e. a full transversal for which any proper subset
is cycle-free. In fact, we prove a counting result that is best possible up to lower order
terms. This result strengthens a result of Kwan [4] (which in turn implies that almost all
Latin squares also satisfy the famous Ryser-Brualdi-Stein conjecture [2, 5, 6]). As part of
the proof, we also prove that almost all n × n Latin squares have no symbol appearing
more than ω(log n/ log log n) times on the leading diagonal.

The Ryser-Brualdi-Stein conjecture and the Gyárfás-Sárközy conjecture can be equiva-
lently stated as questions concerning the existence of nearly spanning rainbow subgraphs
in proper arc-colorings of the complete directed graph and can thus be viewed as “di-
rected analogues” of Andersen’s conjecture [1]. We propose a common strengthening of
all three of these conjectures, which holds for almost all Latin squares by our main result.

[1] L. D. Andersen. Hamilton circuits with many colours in properly edge-coloured com-
plete graphs. Math. Scand., 64:5–14, 1989.

[2] R. A. Brualdi and H. J. Ryser. Combinatorial matrix theory. Cambridge University
Press, 1991.

[3] A. Gyárfás and G. N. Sárközy. Rainbow matchings and cycle-free partial transversals
of latin squares. Discrete Math., 327:96–102, 2014.

[4] M. Kwan. Almost all Steiner triple systems have perfect matchings. Proc. Lond.
Math. Soc., 121(6):1468–1495, 2020.

[5] H. J. Ryser. Neuere Probleme der Kombinatorik. In Vorträge über Kombinatorik,
pages 69–91, 1967.

[6] S. K. Stein. Transversals of Latin squares and their generalizations. Pacific J. Math.,
59(2):567–575, 1975.
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